Faster Groovy in 1.8

P9

Jochen
,blackdrag®
Theodorou

SpringSource/NVVMWare

D

About blackdrag |

* Working on Groovy Core for about 5 years now
* Almost as long as that Tech Lead of Groovy

* Currently Employed at VMWare, in the
SpringSource Devision

- * Responsible for most of the technical side of
7 Groovy

Email: blackdrag@gmx.org

mailto:blackdrag@gmx.org

. Groovy is a strong and
dynamic typed language
with static elements

B,

Groovy in Keywords |

Dynamic Language

Has an MOP (add/remove/update methods)
Instance based multimethods

Multi threaded (uses java threads)

Runtime class generation or compilation to file

Joint compilation of Groovy and Java (or for
example Scala)

Compiles to normal Java classes with all
signatures visible

7

B

Groovy in Keywords

* Tight integration with Java (Groovy extends Java
extends Groovy)

* Support for generics signatures
* Support for annotations

* Inner classes

* Overloaded Methods

* Support for closures

* Duck typing

Groovy in Keywords |

Dynamic typing
Static typing possible, but with a different concept
Supports java security model

Native Java Bean property support

B,

Differences to Java

Array init syntax is not supported
Semis are optional

No generics testing in expressions
Braces are partially optional
Native lists and maps

Additional loop constructs

Additional methods on standard classes

Disclaimer

Should | mention closures, so | am talking about
groovy.lang.Closure and what we do with it. | am
not talking about closures in the strict functional
sense - more about a mix between open blocks

and anonymous functions, implemented using
Inner classes.

Groovy has closures

Some Important Projects |

Grails for Web Applications

Griffon for Swing Applications

Gradle for Buildsystems

Gparalizer for Parallel Computing

Fibonacci — A stupid Example

* Fib calls cannot be easily
inlined or eliminated

1”’Fff1b(;5‘t ”% i _ The performance of this
1etu?; ‘F'?blé;'jl) depends on 1 compare,

+ fib(n-2) 1 plus, 2 minus and 2
. method calls per fib-run

* All these are quite fast on
the JVM, if you do it like
Java

L s——_——_—_—_

Fibonacci — A stupid Example

* In Groovy n<2 is a method
call

int fibGint n) { * n-1/n-2 are method calls
1f (n<2) return 1

. return fib(n-1) < a+bis a method call
fib(n-2
{ | F) fh(x) is a method call

* All method calls are
,2dynamic”

B

Fibonacci — A stupid Example |

* While integer math can be easily converted into a
few simple CPU codes, a method call often
reugires a jJump

* |f the JIT cannot inline those method calls, we will
jump a lot

* In many cases this is no problem for Groovy or
other dynamic languages since a big part of the
4 computation is done in Java world

* For the Fibonacci example this is different unless
you use for example Biglnteger

i

Groovy 1.0.x / Groovy 1.5.x

public int fib(int n) { //GROOVY 1.5.x
Integer nInt = n;
if (ScriptBytecodeAdapter.comparelLessThan(nInt, 2)) return 1;
Object n 1 = ScriptBytecodeAdapter.invokeMethodN (
/ Fib2.class, nInt, "minus", new Object[]{1l});
Object fib n 1 = ScriptBytecodeAdapter.invokeMethodN (
Fib2.class, this, "fib", new Object[]{n 1});

Object n 2 = ScriptBytecodeAdapter.invokeMethodN (
Fib2.class, nInt, "minus", new Object[]{2});

Object fib n 2 = ScriptBytecodeAdapter.invokeMethodN (
Fib2.class, this, "fib", new Object[]{n 2});

Object ret = ScriptBytecodeAdapter.invokeMethodN (
Fib2.class, fib n 1, "plus", new Object[]{fib n 2});
return DefaultTypeTransformation.intUnbox (ret)

B

Weak Point; Centralized Invocation

public int fib(int n) { //GROOVY 1.5.x
Integer nInt = n;
if (ScriptBytecodeAdapter.comparelLessThan(nInt, 2)) return 1;
Object n 1 = ScriptBytecodeAdapter.invokeMethodN (
Fib2.class, nInt, "minus", new Object[]{1l});
Object fib n 1 = ScriptBytecodeAdapter.invokeMethodN (
Fib2.class, this, "fib", new Object[]{n 1});

Object n 2 = ScriptBytecodeAdapter.invokeMethodN (
Fib2.class, nInt, "minus", new Object[]{2});
Object fib n 2 = ScriptBytecodeAdapter.invokeMethodN (
Fib2.class, this, "fib", new Object[]{n 2});
Object ret = ScriptBytecodeAdapter.invokeMethodN (
Fib2.class, fib n 1, "plus", new Object[]{fib n 2});
return DefaultTypeTransformation.intUnbox (ret);

4
ScriptBytecodeAdapter.invokeMethodN is used to invoke the
methods minus, fib and plus using the MetaClass — and in

the end Reflection. The receiver and arguments types do
differ.

InvokeMethodN and the invoking methods in MetaClass will
be megamorphic... Reflection is bad anywa

Weak Point: Central Handle all
Cases Method

public int fib(int n) { //GROOVY 1.5.x
Integer nInt = n;
i1if (ScriptBytecodeAdapter.comparelLessThan (nInt, 2))
‘ return 1;
[...]

,2Handle all Cases Methods":
are typically methods taking Objects and then
inside branch off by using for example instanceof

4

Weak Point: Central Handle all
Cases Method

private static int compareToWithEqualityCheck (Object left, Object right, boolean equalityCheckOnly) {
if (left == right) {
return O;

}
if (left == null) {
return -1;
} else if (right == null) {
return 1;
}
if (left instanceof Comparable) {
if (left instanceof Number) {
if (isValidCharacterString(right)) {
return DefaultGroovyMethods.compareTo((Number) left, (Character) box(castToChar(right)));
}
if (right instanceof Character || right instanceof Number) {
return DefaultGroovyMethods.compareTo((Number) left, castToNumber (right));
}
} else if (left instanceof Character) {
if (isValidCharacterString(right)) {
return DefaultGroovyMethods.compareTo((Character)left, (Character)box(castToChar (right)));
}
if (right instanceof Number) {
return DefaultGroovyMethods.compareTo((Character)left, (Number)right);
}
} else if (right instanceof Number) {
if (isValidCharacterString(left)) {
return DefaultGroovyMethods.compareTo((Character)box(castToChar(left)), (Number) right);
}
} else if (left instanceof String && right instanceof Character) {
return ((String) left).compareTo (right.toString());
} else if (left instanceof String && right instanceof GString) {
return ((String) left).compareTo (right.toString());

}

if (!equalityCheckOnly || left.getClass().isAssignableFrom(right.getClass())
|| (right.getClass() != Object.class && right.getClass().isAssignableFrom(left.getClass())) //GROOVY-4046
|| (left instanceof GString && right instanceof String)) {
Comparable comparable = (Comparable) left;

return comparable.compareTo (right) ;

}

if (equalityCheckOnly) {
return -1; // anything other than 0

}

throw new GroovyRuntimeException ("Cannot compare " + left.getClass().getName() + " with value
left + "' and " + right.getClass().getName() + " with value '" + right + "'");

e

s

Weak Point: Central Handle all
Cases Method

private static int compareToWithEqualityCheck (
Object left, Object right, boolean equalityCheckOnly)

{
[...]
if (left instanceof Comparable) {
if (left instanceof Number) {
[...]
} else if (left instanceof Character) {
[...]
‘ } else if (right instanceof Number) {
[...]
} else if (left instanceof String && right instanceof Character) {
[...]
} else if (left instanceof String && right instanceof GString) {

[...]
o]

Methods like these do get easily too big to be
efficiently handled

Back to stupid Fibonacci |

* Java: fib(42) takes about 3.4s

* Groovy 1.5.x: fib(42) takes about 10 minutes
(Java®193)

So we encouraged people to write such ,hot
spots” in Java

7

Groovy 1.6.x / Groovy 1.7.x

private static CallSiteArray csa =
new CallSiteArray(Fib.class,"fib", "minus", "plus");
é private static Integer const$Sl = 1, constS2 = 2;

public int fib(int n) { // GROOVY 1.6.x / 1.7.x
Integer nInt = ny;
CallSite[] c¢cs = csa.array;
if (ScriptBytecodeAdapter.comparelLessThan(nInt, constS2))
return constsSi;

Object n 1 = cs[l].call(nInt,consts$l);
Object fib n 1 = cs[0].call(this,n 1);
Object n 2 = cs[1l].call(nInt, const$2);
Object fib n 2 = c¢s[0].call(this,n 2);
Object ret = cs[2].call(fib n 1,fib n 2);

return ret;

e

Weak Point: Central Handle all
Cases Method

é public int fib(int n) { //GROOVY 1.0.x — GROOVY 1.7.x
[...]
if (ScriptBytecodeAdapter.comparelLessThan (nInt, const$2))
return 1;

comparelLessThan is still the same — so same
problems.

i

CallSite and CallSiteArray

Each class has a CallSiteArray, storing all CallSite
objects

Each invocation through a CallSite may replace
the entry in that CallSiteArray

Runtime generated methods can be used to call
the target method for this CallSite directly

Next call will then pickup the optimized method
Inlining becomes partially available

No Reflection for method invocation anymore

CallSite and CIISiteArray

* We still often go through the meta class to invoke
methods

* If the user provides a custom meta class we have
no other chance than to do that

* Runtime bytecode generation for method call stubs
eats up permgen fast

|- We rely partially on Unsafe to avoid method
verification and other things

CallSite and CallSiteArray

CallSite and CallSiteArray have mostly the same
functional potential as MethodHandles do, but
we do not make use of the full potential

not yet

Back to stupid Fibonacci

6-7x times faster than Groovy 1.0.x/1.5.x
Java for fib(42) takes about 3.4s

Groovy 1.6.x/1.7.x for fib(42) takes about 97s
(still Java*28)

If BigIinteger is used, Groovy is only about 57%
slower

S0 we encourage people to write such ,hot
spots” in Java

Groovy 1.8 (not yet released)

public int fib(int n) { //GROOVY 1.8 - fastpath
if (intDefault.valid) {
if (n<2) return 1;
if (intDefault.valid && thisDefault.valid) {
return fib2 (n-1)+fib2 (n-2);
} else {
goto label;

N

}

} else {//GROOVY 1.6 style fall back - slowpath
Integer nInt = n;
CallSite[] cs = csa.array;
if (ScriptBytecodeAdapter.compareLessThan(nInt, 2)) return 1;
label: return 1;
Integer n 1 = (Integer) cs[l].call(nInt,constyl

) ;

Integer fib n 1 = (Integer) cs[0].call(this,n 1);

Integer n 2 = (Integer) cs[l].call(nInt,constS$S2);
)

4

Integer) cs[2].call(fib n 1,fib n 2);

_ (

Integer fib n 2 = (Integer) cs[0].call(this,n 2
Integer ret = (

return ret;

B,

Groovy 1.8 (not yet released) |

public int fib(int n) { //GROOVY 1.8
if (intDefault.valid) {
if (n<2) return n;
if (intDefault.valid && thisDefault.valid) {
[...]
}

* intDefault and thisDefault are holders for
booleans without any synchronization

* They get flagged if the according MetaClass is no
longer the default (intDefault for the MetaClass
of Integer/int)

* The current thread may or may not pick up the
change. If the user wants to be sure,
synchronization has to be provided by the user

Groovy 1.8 (no yet released)

The basic idea is to guard each statement by
those boolean flag holders, if the expressions
inside are optimized

int fib(int n) {

if (n<2?2) return 1

return fib(n-1) + fib(n-2)
}

|+ The green parts are optimized to integer math
operations

* The red parts are optimized to direct method calls

B,

Groovy 1.8 (not yet released)

This allows the JIT to work on very ,local” data

We avoid big concurrent data structures, called for
each method invocation

Many calls become possible without need for an
actual MetaClass

Groovy does often BigDecimal based calculations
In the background that can be mapped to double
operations in the fastpath

Groovy 1.8 (not yet released)

int count (List<List> 1istOfLists) {
int size = 0
listOfLists.each { it?.each { size++ } }
return size

}

* The green parts are optimized to integer math
operations

* The red parts are optimized to direct method calls, but
we don't know the exact type, so the compiler may
Z has to guess

* Problem 1: the closures here do contain
ExpressionStatements, which are to be handled like
statements.

* Problem 2: Do we really want all those types?

Expression Statement

int count (List<List> 1listOfLists) { // fastpath only

int size = 0
Closure cl = { List it ->
/’ Closure c2 = {if (integerDefault.valid {sizet++} else ...}
if (it?.getClass()==ArraylList.class

&& arrayListDefault.valid)

{
DefaultGroovyMethod.each (listOfLists, c2)

} else

}
if (listOfList?.getClass()==ArraylList.class

&& arrayListDefault.valid)
{

DefaultGroovyMethod.each (1listOfLists, cl)

} else
return size

B

partial static compilation problem |

The already big bytecode gets doubled in size for
the same code

If the type cannot be infered or is not specific
enough, we may not be able to optimize

Statically optimizing multimethods is tough

A slow compiler is no option if you do runtime
compilation

Calling for example
DefaultGroovyMethods#each(Collection,Closure)
turns into a problem if a more specific method is

iven in a new version of Groov

partial static cmpilation problem

Still Groovy 1.8 will get an optional partial static
? compiler to finally make use of ,optional typing®

B,

partial static compilation speed

* Java for fib(42) takes about 3.4s

* Groovy 1.8.x prototype for fib(42) takes about 3.8s
(12% slower than Java, over a hundred times
faster than Groovy 1.0)

S0 we may no longer encourage people to write
such ,hot spots” in Java

EHE,,e

Where it is of absolutely no help

* A custom MetaClass on Integer, destroys all
integer math optimizations

* We rely on a certain meta class all the time, but for
example Grails uses the non default, mutable
MetaClass ExpandoMetaClass. So no
optimizations here

* Categories (thread scoped method additons to
‘ classes) are like setting a custom MetaClass for
a short time. So no optimizations here

.

Groovy 1.8 (not y eleased)

Other things to optimize:

* MetaClass requires much memory. Maybe partial
MetaClasses are possible (load additional
iInformation on demand, rather than upfront)

* Groovy startup time should be reduced (faster
MetaClass creation will help here, avoiding to
7 read in DefaultGroovyMethods and creating
wrappers for each method too)

.

Groovy 2.0 (maybe d of 2011)

* Groovy 1.8 is really a testing ground to find out as
of what has to be changed to get Groovy fast in
most cases, but makes Groovy incompatible to
older versions

Possible changes are:

* Change MetaClass to deliver ,executables” instead

7 of having custom MetaClasses

* Those maybe be internally realized by
MethodHandles or CallSites

Comment on MethodHandles

* MethodHandles are cool, but only in Java’
* Groovy wants to be fast on Javab too

* Remi's backport is cool, but will not help us much,
since Groovy wants to run in environments
where no Agents are allowed

Q/A!?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38

