ements in OpenJDK useful for JVM

JVM Language Summit 2010

Eric Caspole
AMD Java Labs
July 2010

~

AMD

The future is fusion




bs working on Open]DK
utions for better performance and diagnostics
et project ideas from customer cases or benchmarks

AMD changes added to Open]DK since November 2009

— JVMTI change for better performance while JDWP debugging
— JVMTI extension to export info for inlining in JITed methods
— Unload older methods in code cache if it gets full

— Make compiled method sweeper concurrent with application

The future is fusion

@ 2 Improvements in Open]DK useful for JVM Languages AMD




'— ging Improvement

lStarted with jdwp agent if you ever want to attach a
ypical command line:

dwp=transport=dt socket,address=8000,server=y,suspend=n

.Some customers run in production with JDWP agent on!
— “Just in case” need to attach a JVMTI debugger later

— Expectation: little or no performance penalty if debugger not
attached

= On many workloads this is true

JDWP agent enables JVMTI event notifications when the debugger
attaches, but must enable JVMTI capabilities at boot time.

— Some capabilities were affecting Open]DK codegen, even when no
debugger attached

The future is fusion

@ 3 Improvements in Open]DK useful for JVM Languages AMD




_generate_exceptions Capability

| vIe's this JVMTI capability at startup
throw handling always prepared to send an event
: took slow path even if no debugger attached
~ — Caused a deoptimization and revert to interpreter each time
— Huge performance penalty on throwy applications

Our change allows full-speed exception-path operation until
debugger is attached

Events generated only when attached, per-thread basis
Speed up code/build/debug work cycles
Automatically on in latest builds, no option required

@ 4 Improvements in Open]DK useful for JVM Languages AMD

The future is fusion




g - Performance Results

ve performance to no JVMTI agent

Internal JIRA
bench

M Internal
Xplanner
bench

= Q
:U
=
ugm
s E
[
6 €
(=)
S o

Original Modified

@ 5 Improvements in Open]DK useful for JVM Languages AMD N

The future is fusion




ed Method Inlining Info

‘the JVM emits events to agents by callbacks
dMethodLoad when compiled method is installed
= ul for profiling and monitoring
. Shows method id, address of code, and map to BClIs

Why would we want to see inline details in JVMTI?
— Fine-grain perf tuning
— Understanding how Hotspot compiles your app

@ 6 Improvements in Open]DK useful for JVM Languages AMD

The future is fusion




ed Method Inlining Info

ss more info describing inline sites to agent

void JUNICALL compiledMethodLoad (jvmtiEnv *jvmti env, jmethodID method,
EEREodeNsTze s const void* code addr, jint map length,
const jvmtiAddrLocationMap* map,
const void* compile info)

The future is fusion

@ 7 Improvements in Open]DK useful for JVM Languages AMD




ed Method Inlining Info

' compile_info param to emit inline info
ns a ptr to a jvmtiCompiledMethodLoadInlineRecord
N a base struct for other uses of compile_info

typedef struct PCStackInfo {
void* pc; /* the pc address for this compiled method */
jint numstackframes; /* number of methods on the stack */
jmethodID* methods; /* array of numstackframes method ids */

jint* bcis; /* array of numstackframes bytecode indices */
FRPCOCACKINTIO;

typedef struct jvmtiCompiledMethodLoadInlineRecord {
jvmtiCompiledMethodLoadRecordHeader header; /* common header for casting */

jint numpcs; /* number of pc descriptors in this nmethod */
PCStackInfo* pcinfo; /* array of numpcs pc descriptors */
jvmtiCompiledMethodLoadInlineRecord;

8 Improvements in Open]DK useful for JVM Languages AMD '
The future is fusion




w of Code Cache/Sweeping

ds are allocated in the code cache
et moved by GC, but contain fields that get GCed
ick around until invalidated or owning class is unloaded
— Code Cache has fixed upper limit, it can’t grow forever
— 48MB server, 32MB client by default in JDK 6 for x86

Java app threads run doing work then block at a safepoint
Safepoints may happen for GC or runtime reasons
Most safepoint work happens running on the VM thread

@ 9 Improvements in Open]DK useful for JVM Languages AMD

The future is fusion




rview of Code Cache/Sweeping

| bmpiled methods reclaimed by “sweeper”
runs during each safepoint on VM thread

Di ded methods go through phases of aging
— Non-entrant: activations may still exist, need to keep it

— Zombie: we are sure no activations exist, can flush it

Methods get marked non-entrant when compile-time assumptions
become invalid
— Callers will enter a stub and go back into the runtime

— Method will get recompiled again later

Compiling/sweeping occurring frequently as the application runs

@ 10 Improvements in Open]DK useful for JVM Languages AMD
The future is fusion




n of the "Code Cache Full" Problem

ache has a fixed upper size
r is shut off if code cache gets full
ew code runs interpreted-only
— Existing compiled methods remain active
— No way to turn compiler back on if space should clear up

In a large application, tens of thousands of methods will get
compiled as time goes by

Many J2EE app servers offer hot (re)deployment of web apps
New apps should each be in their own class loader

— A class loader is a playpen so apps cannot see each other
— Everything in one class loader gets unloaded together

@ 11 Improvements in Open]DK useful for JVM Languages AMD

The future is fusion




f the "Code Cache Full” Problem

instance of web app will get garbage collected

rver or app coding error may prevent unloading
— Everything in that class loader context remains alive
— Compiled methods from old instances don’t get unloaded
Code cache becomes full, reducing application performance

No message is emitted when compiler is shut off
Mysterious slowdowns are the best slowdowns

Only solution was to restart the application

@ 12 Improvements in Open]DK useful for JVM Languages AMD

The future is fusion




ull - Description of the Fix

] :arget the older half of active compiled methods
sive unloading

load methods only used during app startup
— Will address the app redeployment issue
— Assume most recently compiled is the hot code

Not really necessary to unload all of those

— Default max code cache size is 48MB

— Probably some hot methods are in the older half
— Want to sustain good performance

What to do?

@ 13 Improvements in Open]DK useful for JVM Languages AMD
The future is fusion




Disconnection

’t the compiled code from the JVM metadata
1ting the java method

_a rs';:'notice compiled code ptr is null, enter runtime to
ind destination

— Uses the usual path for resolving a method

— Target could be interpreted or compiled

Resolve code determines target method is disconnected
— Reconnects the link from metadata->compiled code

— Method goes back to the normal state

Methods not restored in this way will soon be marked
non-entrant and reclaimed by normal sweeping

@ 14 Improvements in Open]DK useful for JVM Languages AMD

The future is fusion




Disconnection
both server and client compilers
és’; methods likely to avoid being flushed
Applications spend more time running compiled code
Performance largely unaffected when unloading happens
Pause time comparable or better than scavenge GC

Use new HotSpot option -XX:+UseCodeCacheFlushing

@ 15 Improvements in Open]DK useful for JVM Languages AMD

The future is fusion




';';eepe" - Description of the Problem

ns are getting larger
ind more compiled code
Housekeeping of the code takes longer

New CPUs have lots of cores
— Safepoint time degrades throughput more and more
— Want to get app threads back to work quickly

Sweeper runs a little during each safepoint
— Scans thread stacks to find methods in active frames
— Sweeps the code cache to delete discarded nmethods

@ 16 Improvements in Open]DK useful for JVM Languages AMD

The future is fusion




eper - Description of the Problem
| és can be 10+ ms even on latest CPUs
happen during every safepoint depending on app

Want to shorten safepoints as much as possible

@ 17 Improvements in Open]DK useful for JVM Languages AMD

The future is fusion




eper - Description of the Change

Continues to run in the safepoint
che sweeping runs concurrently
Oves'majority of work out of safepoint
— Performed by compiler threads
— Possibly sweep before taking a new compile task
— Compiling can run on other threads during sweep
Retrofit code cache unloading to be compatible

@ 18 Improvements in Open]DK useful for JVM Languages AMD

The future is fusion




es available in latest Open]DK builds

ITI change for better performance while JDWP debugging
— Find the problem faster
JVMTI extension to export info for inlining in JITed methods
— Find the hotspot more easily
Unload older methods in code cache if it gets full
— Use -XX:+UseCodeCacheUnloading
Make compiled method sweeper concurrent with app

— Less safepoint time increases potential throughput

The future is fusion

@ 19 Improvements in Open]DK useful for JVM Languages AMD




| Blbg describing Code Cache Unloading:

20 Improvements in Open]DK useful for JVM Languages AMD
The future is fusion




r & Attribution

)n presented in this document is for informational purposes only and may
ical inaccuracies, omissions and typographical errors.

‘The information contained herein is subject to change and may be rendered inaccurate for
‘many reasons, including but not limited to product and roadmap changes, component and
motherboard version changes, new model and/or product releases, product differences
between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or
the like. AMD assumes no obligation to update or otherwise correct or revise this
information. However, AMD reserves the right to revise this information and to make
changes from time to time to the content hereof without obligation of AMD to notify any
person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR
OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES
ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2009 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ATI,
the ATI Logo, FirePro, FireStream, Radeon, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Other names are for informational purposes only and may be
trademarks of their respective owners.

21 Improvements in Open]DK useful for JVM Languages AMD
The future is fusion




