
Improvements in OpenJDK useful for JVM
Languages

JVM Language Summit 2010

Eric Caspole
AMD Java Labs
July 2010

Improvements in OpenJDK useful for JVM Languages2

Overview

! AMD Java Labs working on OpenJDK

– Contributions for better performance and diagnostics

– Get project ideas from customer cases or benchmarks

! AMD changes added to OpenJDK since November 2009

– JVMTI change for better performance while JDWP debugging

– JVMTI extension to export info for inlining in JITed methods

– Unload older methods in code cache if it gets full

– Make compiled method sweeper concurrent with application

Improvements in OpenJDK useful for JVM Languages3

JDWP Debugging Improvement

! JVM must be started with jdwp agent if you ever want to attach a
debugger, typical command line:
agentlib:jdwp=transport=dt_socket,address=8000,server=y,suspend=n

! Some customers run in production with JDWP agent on!

– “Just in case” need to attach a JVMTI debugger later

– Expectation: little or no performance penalty if debugger not
attached

! On many workloads this is true

! JDWP agent enables JVMTI event notifications when the debugger
attaches, but must enable JVMTI capabilities at boot time.

– Some capabilities were affecting OpenJDK codegen, even when no
debugger attached

Improvements in OpenJDK useful for JVM Languages4

JVMTI can_generate_exceptions Capability

! JDWP enables this JVMTI capability at startup

! Exception throw handling always prepared to send an event

! Throws took slow path even if no debugger attached

– Caused a deoptimization and revert to interpreter each time

– Huge performance penalty on throwy applications

! Our change allows full-speed exception-path operation until
debugger is attached

! Events generated only when attached, per-thread basis

! Speed up code/build/debug work cycles

! Automatically on in latest builds, no option required

Improvements in OpenJDK useful for JVM Languages5

JDWP Debugging - Performance Results

Improvements in OpenJDK useful for JVM Languages6

JVMTI Compiled Method Inlining Info

! With JVMTI, the JVM emits events to agents by callbacks

! CompiledMethodLoad when compiled method is installed

– Useful for profiling and monitoring

– Shows method id, address of code, and map to BCIs

! Why would we want to see inline details in JVMTI?

– Fine-grain perf tuning

– Understanding how Hotspot compiles your app

Improvements in OpenJDK useful for JVM Languages7

JVMTI Compiled Method Inlining Info

! Need to pass more info describing inline sites to agent

! An unused parameter compile_info was provided in the
callback API

void JNICALL compiledMethodLoad (jvmtiEnv *jvmti_env, jmethodID method,

jint code_size, const void* code_addr, jint map_length,

const jvmtiAddrLocationMap* map,

const void* compile_info)

Improvements in OpenJDK useful for JVM Languages8

JVMTI Compiled Method Inlining Info

! We used the compile_info param to emit inline info

– Contains a ptr to a jvmtiCompiledMethodLoadInlineRecord

– Built on a base struct for other uses of compile_info

typedef struct _PCStackInfo {

 void* pc; /* the pc address for this compiled method */

 jint numstackframes; /* number of methods on the stack */

 jmethodID* methods; /* array of numstackframes method ids */

 jint* bcis; /* array of numstackframes bytecode indices */

} PCStackInfo;

typedef struct _jvmtiCompiledMethodLoadInlineRecord {

 jvmtiCompiledMethodLoadRecordHeader header; /* common header for casting */

 jint numpcs; /* number of pc descriptors in this nmethod */

 PCStackInfo* pcinfo; /* array of numpcs pc descriptors */

} jvmtiCompiledMethodLoadInlineRecord;

Improvements in OpenJDK useful for JVM Languages9

Quick Overview of Code Cache/Sweeping

! JITed methods are allocated in the code cache

– Don’t get moved by GC, but contain fields that get GCed

– Stick around until invalidated or owning class is unloaded

– Code Cache has fixed upper limit, it can’t grow forever

– 48MB server, 32MB client by default in JDK 6 for x86

! Java app threads run doing work then block at a safepoint

! Safepoints may happen for GC or runtime reasons

! Most safepoint work happens running on the VM thread

Improvements in OpenJDK useful for JVM Languages10

Quick Overview of Code Cache/Sweeping

! Invalidated compiled methods reclaimed by “sweeper”

! Sweeper runs during each safepoint on VM thread

! Discarded methods go through phases of aging

– Non-entrant: activations may still exist, need to keep it

– Zombie: we are sure no activations exist, can flush it

! Methods get marked non-entrant when compile-time assumptions
become invalid

– Callers will enter a stub and go back into the runtime

– Method will get recompiled again later

! Compiling/sweeping occurring frequently as the application runs

Improvements in OpenJDK useful for JVM Languages11

Description of the "Code Cache Full" Problem

! The code cache has a fixed upper size

! Compiler is shut off if code cache gets full

– New code runs interpreted-only

– Existing compiled methods remain active

– No way to turn compiler back on if space should clear up

! In a large application, tens of thousands of methods will get
compiled as time goes by

! Many J2EE app servers offer hot (re)deployment of web apps

! New apps should each be in their own class loader

– A class loader is a playpen so apps cannot see each other

– Everything in one class loader gets unloaded together

Improvements in OpenJDK useful for JVM Languages12

Description of the "Code Cache Full" Problem

! Ideally, old instance of web app will get garbage collected

! App server or app coding error may prevent unloading

– Everything in that class loader context remains alive

– Compiled methods from old instances don’t get unloaded

! Code cache becomes full, reducing application performance

! No message is emitted when compiler is shut off

! Mysterious slowdowns are the best slowdowns

! Only solution was to restart the application

Improvements in OpenJDK useful for JVM Languages13

Code Cache Full - Description of the Fix

! Decided to target the older half of active compiled methods
for aggressive unloading

– Will unload methods only used during app startup

– Will address the app redeployment issue

– Assume most recently compiled is the hot code

! Not really necessary to unload all of those

– Default max code cache size is 48MB

– Probably some hot methods are in the older half

– Want to sustain good performance

! What to do?

Improvements in OpenJDK useful for JVM Languages14

Speculative Disconnection

! Disconnect the compiled code from the JVM metadata
representing the java method

! Callers notice compiled code ptr is null, enter runtime to
find destination

– Uses the usual path for resolving a method

– Target could be interpreted or compiled

! Resolve code determines target method is disconnected

– Reconnects the link from metadata->compiled code

–Method goes back to the normal state

! Methods not restored in this way will soon be marked
non-entrant and reclaimed by normal sweeping

Improvements in OpenJDK useful for JVM Languages15

Speculative Disconnection

! Works with both server and client compilers

! Hottest methods likely to avoid being flushed

! Applications spend more time running compiled code

! Performance largely unaffected when unloading happens

! Pause time comparable or better than scavenge GC

! Use new HotSpot option -XX:+UseCodeCacheFlushing

Improvements in OpenJDK useful for JVM Languages16

Nmethod Sweeper - Description of the Problem

! Applications are getting larger

–More and more compiled code

– Housekeeping of the code takes longer

! New CPUs have lots of cores

– Safepoint time degrades throughput more and more

–Want to get app threads back to work quickly

! Sweeper runs a little during each safepoint

– Scans thread stacks to find methods in active frames

– Sweeps the code cache to delete discarded nmethods

Improvements in OpenJDK useful for JVM Languages17

Nmethod Sweeper - Description of the Problem

! Sweep times can be 10+ ms even on latest CPUs

! Can happen during every safepoint depending on app

! Want to shorten safepoints as much as possible

Improvements in OpenJDK useful for JVM Languages18

Nmethod Sweeper - Description of the Change

! Stack scan continues to run in the safepoint

! Code cache sweeping runs concurrently

! Moves majority of work out of safepoint

– Performed by compiler threads

– Possibly sweep before taking a new compile task

– Compiling can run on other threads during sweep

! Retrofit code cache unloading to be compatible

Improvements in OpenJDK useful for JVM Languages19

Summary

! These changes available in latest OpenJDK builds

! JVMTI change for better performance while JDWP debugging

– Find the problem faster

! JVMTI extension to export info for inlining in JITed methods

– Find the hotspot more easily

! Unload older methods in code cache if it gets full

– Use -XX:+UseCodeCacheUnloading

! Make compiled method sweeper concurrent with app

– Less safepoint time increases potential throughput

Improvements in OpenJDK useful for JVM Languages20

Resources and Links

JVMTI Inlining Article:
http://developer.amd.com/documentation/articles/pages/JVMTIEventPiggybacking.aspx

JDWP Debugging Article:
http://developer.amd.com/documentation/articles/pages/Java-Performance-Debugging-Enabled.aspx

Blog describing Code Cache Unloading:
http://blogs.amd.com/developer/2010/04/12/better-uptime-for-long-running-java-applications/

Improvements in OpenJDK useful for JVM Languages21

2

1

Disclaimer & Attribution

DISCLAIMER

The information presented in this document is for informational purposes only and may
contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for
many reasons, including but not limited to product and roadmap changes, component and
motherboard version changes, new model and/or product releases, product differences
between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or
the like. AMD assumes no obligation to update or otherwise correct or revise this
information. However, AMD reserves the right to revise this information and to make
changes from time to time to the content hereof without obligation of AMD to notify any
person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR
OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES
ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2009 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ATI,
the ATI Logo, FirePro, FireStream, Radeon, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Other names are for informational purposes only and may be
trademarks of their respective owners.

