
The Da Vinci Report
What’s happening with JVM futures?

Executive Summary
• The Da Vinci Machine Project is incubating significant

changes to the JVM™ bytecode architecture including
JSR 292.

• The people in this room are helping to do this.

2

A Bit of Back Story
From the JVM Specification, circa 1997
• “The Java virtual machine knows nothing about the Java

programming language, only of a particular binary format, the
class file format.”

• “Any language with functionality that can be expressed in terms
of a valid class file can be hosted by the Java virtual machine.”

• “In the future, we will consider bounded extensions to the Java
Virtual Machine to provide better support for other languages.”

3

What’s happened in the last year?
• Apr 2008 – first code posted to mlvm repository

> anonymous classes (anonk), continuations (callcc)
• May 2008 – JSR 292 E.G. releases draft for review

> Rémi Forax commits code to JSR 292 Backport project
• Aug 2008 – working method handle code

> 8/26/2008 = International Invokedynamic Day
• Sep 2008 – initial Java support code (quid, meth)

> 9/24/2008 = first JVM Language Summit
> Charlie Nutter begins to refactor JRuby for indy

4

What’s happened in the last year?
• 1H2009 – JSR 292 E.G. hammers on indy spec.
• Feb 2009 – working tail-call code (Arnold Schwaighofer)

> v2 of JSR 292 backport (Rémi Forax)
• Mar 2009 – preliminary interface injection code

> inti.patch contributed by Tobias Ivarsson
• Apr 2009 – indy promoted to JDK7 (JavaOne Preview)

5

What’s happened recently?
• May 2009 – Java support promoted to JDK7
• Jun 2009 – Java One: http://cr.openjdk.java.net/~jrose/pres/

> “Call for collaboration” 200906-DVMCollab.pdf
> “Renaissance VM” 200906-RenaisVM.pdf
> “JSR 292 Cookbook” 200906-Cookbook.pdf

• Jun/Jul 2009 – inlining of invokedynamic & MH calls
• Aug 2009 – JRuby “fib” benchmark wins w/ indy

8/23, Nutter: “This is the first time we've had JRuby performing better
with indy than with our built-in logic. And even more exciting: I don't think
this is actually inlining the dynamic calls, eventually still doing a slow
virtual call to the target body of code.”

6

What’s happening now?
• Active developer community

> mlvm-dev@openjdk.java.net
> irc.freenode.org #mlvm

• JSR 292 RI has 2 coders (Rose, Thalinger)
• JSR 292 backport has 1 coder (Forax)
• Working patches currently exist for:

> JSR 292 (method handles, invokedynamic, etc.)
> JVM interface injection, continuations, tailcall, hotswap

• JSR 292 EG discussing the design
> issues: generic vs. exact invoke, inheriting from

MethodHandle, etc., etc.
7

Integrations to JDK 7
• 6/2009 – Java One Preview

> runs basic (demo) codes, buggy
• 7-8/2009 – no integrations, just mlvm patch updates

> filling out the JSR 292 APIs
> implementing initial compiler optimizations (MH inlining!)
> initial support for x86/64
> fixing GC problems (managed pointers in code)

• 9/2009 – GC adjustments integrated
> ability of compiled code to point to managed user data

• 10/2009 (M5 planned) – current mlvm patches
• before JDK7 FCS: bug fixes, more ports, performance

8

And for the future?
More Da Vinci Machine subprojects!

• fixnums – tagged immediate pseudo-pointers
> http://blogs.sun.com/jrose/entry/fixnums_in_the_vm

• tuple types – primitive structs, structure-based identity
> http://blogs.sun.com/jrose/entry/tuples_in_the_vm

• mixed arrays – fused hybrid of instance, struct, arrays
• new load units – modules, partial classes, shared

images
• what else?

9

Future fixnums
• What: Optimization of autoboxing (Integer.valueOf).

> Tagged pointer, carrying 24 to 63 bits of immediate data
> No indirections, no memory usage
> Good for all primitive wrapper types (except maybe float/

double)
• Why: Dynamic languages need primitives too.

> But they need to interconvert efficiently with Object
> JIT escape analysis and box analysis not systemic enough

10

Future tuples & value types
• What: Data without state or identity.

> Pass directly in multiple registers.
> No side effects, ever.
> Tuples, numeric types, immutable collections.

• Wait: Are they objects too? (Can go in Lists?)
> Yes, allow references to “boxes” in heap.
> Adjust “==” to perform structure comparison.

• Why: Languages need compact structs/tuples.
> Numeric people want Complex, Rational, etc.
> Even if it’s not in Java, the JVM has to help.

11

Future mixed arrays (hybrids)
• What: An array fused onto the tail of an instance
• Why: Building block for data structures

> fewer pointers, indirections, dependent loads

12

Let’s get technical about JSR 292...

13

Example: Class-based single dispatch
> For this source code
 //PrintStream out = System.out;

out.println("Hello World");

 The compiled byte code looks like
 4: aload_1
 5: ldc #2 //String "Hello World”
 7: invokevirtual #4 //Method java/io/PrintStream.println:
 (Ljava/lang/String;)V

– Again, names in bytecode
– Again, linking fixed by JVM
– Only the receiver type determines method selection
– Only the receiver type can be adapted (narrowed)

14

How the VM selects the target method:

15

What more could anybody want? (1)
• Naming — not just Java names

> arbitrary strings, even structured tokens (XML??)
> help from the VM resolving names is optional
> caller and callee do not need to agree on names

• Linking — not just Java & VM rules
> can link a call site to any callee the runtime wants
> can re-link a call site if something changes

• Selecting — not just static or receiver-based
> selection logic can look at any/all arguments
> (or any other conditions relevant to the language)

16

What more could anybody want? (2)
• Adapting — no exact signature matching

> widen to Object, box from primitives
> checkcast to specific types, unbox to primitives
> collecting/spreading to/from varargs
> inserting or deleting extra control arguments
> language-specific coercions & transformations

• (…and finally, the same fast control transfer)

• (…with inlining in the optimizing compiler, please)

17

Example: Dynamic invocation
> How would we compile a function like

 function max(x, y) {
 if (x.lessThan(y)) then y else x
}

> Specifically, how do we call .lessThan()?
–

18

Dynamic invocation (how not to)
> How about:
 0: aload_1; aload_2
 2: invokevirtual #3 //Method Unknown.lessThan:
 (LUnknown;)Z
 5: if_icmpeq

> That doesn't work
> No receiver type
> No argument type
> Return type might not even be boolean (‘Z’)
–

19

Dynamic invocation (how to)
> A new option:
 0: aload_1; aload_2
 2: invokedynamic #3 //NameAndType lessThan:
 (Ljava/lang/Object;Ljava/lang/Object;)Z
 5: if_icmpeq

> Advantages:
● Compact representation
● Argument types are untyped Objects
● Required boolean return type is respected

–

20

Dynamic invocation requirements
• Application-defined call site linkage state & behavior

> Linkage is to arbitrary behavior (code/data closures)
> Complete generality (polymorphism) over signatures

• Aggressive optimization
> Inlining of present linkage state
> Correct execution whenever linkage state changes

• Complete access to semantics of existing “invoke” ops
> Ability to link to any existing (accessible) method

• Reasonable ease of use for programmers
21

Dynamic invocation (missing details)
• But where is the dynamic language plumbing??

> We need something like invoke_2 and toBoolean!
> How does the runtime know the name lessThan?

• Answer: it’s all method handles (MH).
> A MH can point to any accessible method
> (A MH can do normal receiver-based dispatch)
> The target of an invokedynamic is a MH

22

invokedynamic, as seen by the VM:

23

more invokedynamic plumbing: “adapters”

24

meta-plumbing: the bootstrap method

25

A budget of invokes

26

invoke-
static

invoke-
special

invoke-
virtual

invoke-
interface

invoke-
dynamic

no receiver receiver receiver
class

receiver
interface no receiver

no dispatch no dispatch single
dispatch

single
dispatch

adapter-
based

dispatch

B8 nn nn B7 nn nn B6 nn nn B9 nn nn aa 00 BA nn nn 00 00

So we’re done?
• Not there yet.
• More engineering to do (watch for JDK7 M5!)

> ports: x86/64, SPARC, compressed oops, C++ interpreter
> bugs & performance

• One more pass of specification work
> ...now that we have an RI to play with (and not before)
> JSR 292 EG is discussing certain known issues
> we need more smart people trying to use the RI

27

How to mature a specification
• Make early drafts and prototypes public
• Get a community of experts, including a few key users
• Find out what really works and doesn’t, in practice

> Make sure you can implement it in at least one VM
> Make sure at least a few users can actually benefit from it
> Avoid excessive esthetics & philosophy (& bike sheds)
> But expect experience to birth new insights & refactorings

• Iterate on the specification in light of all of the above
> Involve VM vendors and key users, all the way to the end

• And, expect a little “you Fool, you’ve destroyed Java!”
28

Burning issue: varieties of invoke
• There are three “natural” forms of JVM invocation:

> exactInvoke (identical signatures, existing linkage match)
> genericInvoke (value-preserving, box/unbox/cast)
> varargsInvoke (the most general; uses argument array)

• These are in order of increasing complexity & cost
• Any of them can simulate any of the others.

> Can any be dropped? Experience shows use cases for all.
• Which should be favored as MethodHandle.invoke?

> IBM/Oracle: generic invoke is useful; let’s default to it
> Sun RI: possible before useful; start w/ exact version
> users: (hello out there?)

29

Burning issue: subclassing JMH
• RI includes “JavaMethodHandle”, a subclassable MH

> used in RI for factoring method handle state/behavior
> may be used with inner classes, for closure-like expressions

• Can be used to make supertypes of MH
> for example, settable method pointers:

 abstract class SettableMH
 extends JavaMethodHandle { ...
 abstract MethodHandle setter(); }

> (or self-identifying method pointers, etc.)
• Implementation is simple: A self-bound object.
• Alternative: Non-MH objects which wrap MHs.

30

Burning issue: MH constants
• RI includes reflective-style factories for MH’s & types

> findVirtual(class, name, type), findStatic, findSpecial
> methodType(rtype, ptype...)
> All existing Java example codes use these

• For bytecode compilers, support these too?
> CONSTANT_VirtualMethodHandle (class, name&type)
> CONSTANT_{Static,Special}MethodHandle
> CONSTANT_MethodType (method signature)

• Advantages: Static analysis, caching, prebinding
• Disadvantages: Two ways to do one thing

31

Burning issue: Thrown exceptions
• The JVM has no exception checking rules

> ...but Java does
> so what exceptions should a dynamic invoke throw?

• The painful truth: “throws Throwable”
> Avoids putting another hole in Java’s checked exceptions

• MH-using and invokedynamic-using code looks strange
> must have “throws Throwable” on every subroutine
> when returning to regular Java code, must catch & dispose

• Therefore, we need a code pattern for safe disposal
 try { dynamic stuff... }
 catch (Throwable t) { throw
 checkException(t, IOException.class); }

32

Burning issue: Call site invalidation
• Call sites are linked (and reified) via up-calls

> ...to the app. supplied “bootstrap method”
> this happens lazily, and once only

• Sometimes apps need to do mass invalidation
> does this mean call sites are reified again?
> or does it mean they get reset to some neutral value?

• This needs to be a privileged instruction
> so that cannot be in a race with call site execution
> must be done at a “safepoint”

• Also, what is the right API for batching the victims?

33

Burning issue: Call site splitting
• Oddly, invokedynamic has a data structure per BCI

> this gives the crucial “hook” for building inline caches
> otherwise, per-BCI state is minimal (linkage status)

• Question: May a call site ever be split in two?
> perhaps a JVM will want to clone (inline) some code
> or maybe we’ll invent a “method customization” mechanism

• This issue interacts with the previous:
> invalidation can be viewed as splitting and discarding

34

Non-Conclusion
• Let’s talk more... JSR 292 needs wise users!
• There’s a workshop at 4:00 to talk more about this.

35

