The Da Vinci Report




S

Executive Summary

- The Da Vinci Machine Project is incubating significant
changes to the JVM™ bytecode architecture including
JSR 292.

* The people in this room are helping to do this.



A Bit of Back Story

From the JVM Specification, circa 1997

“The Java virtual machine knows nothing about the Java
programming language, only of a particular binary format, the
class file format.”

“Any language with functionality that can be expressed in terms
of a valid class file can be hosted by the Java virtual machine.”

“In the future, we will consider bounded extensions to the Java
Virtual Machine to provide better support for other languages.”



What’s happened in the last year?

* Apr 2008 - first code posted to mlvm repository
> anonymous classes (anonk), continuations (callcc)

- May 2008 — JSR 292 E.G. releases draft for review
> Reémi Forax commits code to JSR 292 Backport project

* Aug 2008 — working method handle code
> 8/26/2008 = International Invokedynamic Day

» Sep 2008 - initial Java support code (quid, meth)
> 9/24/2008 = first JVM Language Summit
> Charlie Nutter begins to refactor JRuby for indy




=

What’s happened in the last year?

» 1H2009 - JSR 292 E.G. hammers on indy spec.

* Feb 2009 — working tail-call code (Arnold Schwaighofer)
> v2 of JSR 292 backport (Rémi Forax)

+ Mar 2009 - preliminary interface injection code
> Inti.patch contributed by Tobias Ivarsson

* Apr 2009 - indy promoted to JDK7 (JavaOne Preview)



=

What’s happened recently?

» May 2009 - Java support promoted to JDK7

» Jun 2009 - Java One: http://cr.openjdk.java.net/~jrose/pres/
> “Call for collaboration” 200906-DVMCollab.pdf
> “Renaissance VM 200906-RenaisVM.pdf
> “JSR 292 Cookbook” 200906-Cookbook.pdf

»Jun/Jul 2009 - inlining of invokedynamic & MH calls
* Aug 2009 — JRuby “fib” benchmark wins w/ indy

8/23, Nutter: “This is the first time we've had JRuby performing better
with indy than with our built-in logic. And even more exciting: | don't think
this is actually inlining the dynamic calls, eventually still doing a slow
virtual call to the target body of code.”



S

What’s happening now?

Active developer community
> mivm-dev@openjdk.java.net
> Irc.freenode.org #mlvm

JSR 292 Rl has 2 coders (Rose, Thalinger)
JSR 292 backport has 1 coder (Forax)

Working patches currently exist for:
> JSR 292 (method handles, invokedynamic, etc.)
> JVM interface injection, continuations, tailcall, hotswap

JSR 292 EG discussing the design

> Issues: generic vs. exact invoke, inheriting from
MethodHandle, etc., etc.



=

Integrations to JDK 7

» 6/2009 - Java One Preview
> runs basic (demo) codes, buggy

» 7-8/2009 - no integrations, just mlvm patch updates
> filling out the JSR 292 APIs
> implementing initial compiler optimizations (MH inlining!)
> Initial support for x86/64
> fixing GC problems (managed pointers in code)

»+ 9/2009 — GC adjustments integrated
> ability of compiled code to point to managed user data

> 10/2009 (M5 planned) — current mlvm patches
» before JDK7 FCS: bug fixes, more ports, performan098




S

And for the future?

More Da Vinci Machine subprojects!

» fixnums - tagged immediate pseudo-pointers
> http://blogs.sun.com/jrose/entry/fixnums_in_the_vm

* tuple types — primitive structs, structure-based identity
> http://blogs.sun.com/jrose/entry/tuples_in_the_vm

- mixed arrays — fused hybrid of instance, struct, arrays

* new load units — modules, partial classes, shared
images

* what else?




S

Future fixnums

» What: Optimization of autoboxing (Integer.value0f).
> Tagged pointer, carrying 24 to 63 bits of immediate data
> No Indirections, no memory usage
> (Good for all primitive wrapper types (except maybe float/
double)
+ Why: Dynamic languages need primitives too.
> But they need to interconvert efficiently with Object
> JIT escape analysis and box analysis not systemic enough

10



S

Future tuples & value types

+ What: Data without state or identity.
> Pass directly in multiple registers.
> No side effects, ever.
> Tuples, numeric types, immutable collections.
- Wait: Are they objects too? (Can go in Lists?)
> Yes, allow references to “boxes” in heap.
> Adjust “=="to perform structure comparison.

» Why: Languages need compact structs/tuples.
> Numeric people want Complex, Rational, etc.
> Evenifit's notin Java, the JVM has to help.

11



S
//@

microsystems

Future mixed arrays (hybrids)

- What: An array fused onto the tail of an instance

» Why: Building block for data structures
> fewer pointers, indirections, dependent loads

m
|ggtgrr]1ce length=2

fooField .
barField

normal

array
length=2
bazField A

I

length=2
fooField
barField
fooField
barField

array with
extra header
field

12



.,
Let’s get technical about JSR 292...



Example: Class-based single dispatch

> For this source code
//PrintStream out = System.out;

out.println("Hello World") ;

The complled byte code looks like

aload
5: 1ldc #2 //String "Hello World”
7: invokevirtual #4 //Method java/io/PrintStream.println:

(Ljava/lang/String;)V

- Again, names in bytecode

- Again, linking fixed by JVM

- Only the receiver type determines method selection
- Only the receiver type can be adapted (narrowed)

14



How the VM selects the target method:

O//—_\A (class PrintStr)
aload 1 (a stream) /r --------------------

vtable:

}dc '.'Hello.World" Vklasso/} [8] &close
anVlr’F PrlntStJ': P AT D[9] gprintln
.println(String))” ~

 ———— -
Constant /Q/l sS& () \\]
Pool
/ S - Aﬁ/ g
PrintStr.printin (
= virtual[9] 3. execute println(s)
method -

15



S

What more could anybody want? (1)

* Naming — not just Java names
> arbitrary strings, even structured tokens (XML??)
> help from the VM resolving names is optional
> caller and callee do not need to agree on names

» Linking — not just Java & VM rules
> can link a call site to any callee the runtime wants
> can re-link a call site if something changes

» Selecting — not just static or receiver-based
> selection logic can look at any/all arguments
> (or any other conditions relevant to the language)

16



What more could anybody want? (2)

»Adapting — no exact signature matching

> widen to Object, box from primitives
checkcast to specific types, unbox to primitives
collecting/spreading to/from varargs
inserting or deleting extra control arguments
language-specific coercions & transformations

V V V V

* (...and finally, the same fast control transfer)

* (...with inlining in the optimizing compiler, please)

17



S

Example: Dynamic invocation

> How would we compile a function like

function max(x, y) {
if (x.lessThan(y)) then y else x
}

> Specifically, how do we call .1lessThan () ?

18



S

Dynamic invocation (how not to)

> How about:

0: aload 1; aload 2
2: invokevirtual #3 //Method Unknown.lessThan:
(LUnknown;) 2

5: if icmpeq

> That doesn't work
> No receiver type
> No argument type
> Return type might not even be boolean ('Z’)

19



S

Dynamic invocation (how to)

> A new option:

0: aload 1; aload 2
2: invokedynamic #3 //NameAndType lessThan:
(Ljava/lang/Object;Ljava/lang/Object;)Z

5: if icmpeq

> Advantages:
Compact representation
Argument types are untyped Objects
Required boolean return type is respected

20



S

Dynamic invocation requirements

Application-defined call site linkage state & behavior
> Linkage is to arbitrary behavior (code/data closures)
> Complete generality (polymorphism) over signatures

Aggressive optimization
> Inlining of present linkage state
> Correct execution whenever linkage state changes

Complete access to semantics of existing “invoke™ ops

> Ability to link to any existing (accessible) method

Reasonable ease of use for programmers

21



=

Dynamic invocation (missing details)

- But where is the dynamic language plumbing??
> We need something like invoke_2 and toBoolean!
> How does the runtime know the name TessThan?

» Answer: it's all method handles (MH).
> A MH can point to any accessible method
> (AMH can do normal receiver-based dispatch)
> The target of an invokedynamic is a MH

22



S

invokedynamic, as seen by the VM:

aload 1; alcad 2
invdyn lessThan:Z
if icmpeq

this pointer links to
the target method,
a "Method Handle"

(class Runtime

lessThan(,) 2:

23



=

more invokedynamic plumbing: “adapters”

-

aload 1; aload 2
invdyn lessThan:Z
if icmpeq

toBoolean
Adapter

String
"lessThan"

N\

class Runtime

invoke 2 (String message,
Object, Object):

this chain of targets
converts a return

value to boolean, and
inserts an extra

message argument

24



S

meta-plumbing: the bootstrap method

{ N

the invokedynamic
instruction has not
yet been executed

aload 1; aload 2
invdyn lessThan:Z

i1f icmpeq

the containing class must
declare a bootstrap

method to initialize its call

sites on demand

class Runtime

bootstrap (info...):

return new CallSite (info)

J

25



A budget of invokes

invoke- invoke-
static special
no receiver receiver

no dispatch no dispatch

B8 nn nn B7 nn nn

invoke-
virtual

receiver
class

single
dispatch

B6 nn nn

invoke-
interface

receiver
interface

single
dispatch

B9 nn nn aa 00

invoke-
dynamic

no receiver

adapter-
based
dispatch

BA nnnn 00 00

26



=

So we’re done?

* Not there yet.

» More engineering to do (watch for JDK7 M3!)
> ports: x86/64, SPARC, compressed oops, C++ interpreter
> bugs & performance

» One more pass of specification work
> ...now that we have an Rl to play with (and not before)
> JSR 292 EG is discussing certain known issues
> we need more smart people trying to use the R

27



=

How to mature a specification

* Make early drafts and prototypes public
» Get a community of experts, including a few key users

» Find out what really works and doesn't, in practice
> Make sure you can implement it in at least one VM
> Make sure at least a few users can actually benefit from it
> Avoid excessive esthetics & philosophy (& bike sheds)
> But expect experience to birth new insights & refactorings

» lterate on the specification in light of all of the above
> Involve VM vendors and key users, all the way to the end

* And, expect a little “you Fool, you've destroyed Java!”

28



=

Burning issue: varieties of invoke

* There are three “natural” forms of JVM invocation:
> exactInvoke (identical signatures, existing linkage match)
> genericInvoke (value-preserving, box/unbox/cast)
> varargsInvoke (the most general; uses argument array)

» These are in order of increasing complexity & cost

»Any of them can simulate any of the others.
> Can any be dropped? Experience shows use cases for all.

» Which should be favored as MethodHand1e.invoke?
> |BM/Oracle: generic invoke is useful; let’s default to it
> Sun RI: possible before useful; start w/ exact version
> users: (hello out there?)

29



=

Burning issue: subclassing JMH

* Rlincludes “JavaMethodHandle”, a subclassable MH
> used in Rl for factoring method handle state/behavior
> may be used with inner classes, for closure-like expressions

> Can be used to make supertypes of MH

> for example, settable method pointers:
abstract class SettableMH
extends JavaMethodHandle { ...
abstract MethodHandle setter(); }

> (or self-identifying method pointers, etc.)
* Implementation is simple: A self-bound object.
* Alternative: Non-MH objects which wrap MHSs.

30



=

Burning issue: MH constants

» Rlincludes reflective-style factories for MH's & types
> findVirtual(class, name, type), findStatic, findSpecial
> methodType(rtype, ptype...)
> All existing Java example codes use these

* For bytecode compilers, support these too?
> CONSTANT_VirtualMethodHandle (class, nameé&type)
> CONSTANT_{Static,Special}MethodHandle
> CONSTANT_MethodType (method signature)

- Advantages: Static analysis, caching, prebinding
- Disadvantages: Two ways to do one thing

31



=

Burning issue: Thrown exceptions

 The JVM has no exception checking rules

> ...but Java does
> s0 what exceptions should a dynamic invoke throw?

» The painful truth: “throws Throwable”
> Avoids putting another hole in Java's checked exceptions

» MH-using and invokedynamic-using code looks strange

> must have “throws Throwable” on every subroutine
> when returning to regular Java code, must catch & dispose

* Therefore, we need a code pattern for safe disposal

try { dynamic stuff... }
catch (Throwable t) { throw
checkException(t, IOException.class); }

32



S

Burning issue: Call site invalidation

- (Call sites are linked (and reified) via up-calls
> ...to the app. supplied “bootstrap method”
> this happens lazily, and once only

» Sometimes apps need to do mass invalidation
> does this mean call sites are reified again?
> or does it mean they get reset to some neutral value?

» This needs to be a privileged instruction
> 80 that cannot be in a race with call site execution
> must be done at a “safepoint”

- Also, what is the right API for batching the victims?

33



S

Burning issue: Call site splitting

» Oddly, invokedynamic has a data structure per BCI
> this gives the crucial “hook” for building inline caches
> otherwise, per-BCl state is minimal (linkage status)

 Question: May a call site ever be split in two?
> perhaps a JVM will want to clone (inline) some code
> or maybe we'll invent a “method customization™ mechanism

= This issue interacts with the previous:
> Invalidation can be viewed as splitting and discarding

34



Non-Conclusion

* Let’s talk more... JSR 292 needs wise users!
* There’s a workshop at 4:00 to talk more about this.

35



