
Featherweight Defenders

Brian Goetz, Robert Field

April 22, 2011

1 Introduction

As a means of modeling the semantics of virtual extension methods (also known
as defender methods) in Java, we describe a lightweight model of Java in the
style of Featherweight Java (Pierce et al.), called Featherweight Defenders (or
FD).

In this model, there are classes and interfaces, with single inheritance of
classes and multiple inheritance of interfaces. Each class or interface may or
may not specify a single method m(), which has no arguments but has a speci-
fied return type, which may be covariantly overridden. Interface methods may
simply be abstract definitions, have specified defaults or may explicitly cancel
defaults inherited from supertypes. Class methods are abstract or concrete, and
concrete methods may be reabstracted.

We believe that this includes the most significant inheritance features that
are relevant to resolution of extension methods in Java. There are some ad-
ditional features, such as bridge methods, that are beyond the scope of this
model.

2 Syntax

The metavariables C, and D (and their derivatives) range over class names and
the metavariable I and J range over interface names. The metavariables T , R,
U , V , and W range over all types (classes and interfaces). The metavariable
S ranges over sets of types. The metavariable k ranges over a set of nominal
identifiers, typed in the static typing context Γ. The metavariable b ranges over
a set of typed method bodies, typed in the static typing context Γ. Figure 1
shows the syntatic forms for FD.

Set operations on sets of types rely on the identity of the types (all classes
in FD are nominal). So, for example, combining {T} ∪ {T} simply yields the
set {T}. For set operations, nil is treated as the empty set.
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T ::= Object | C | I
K ::= class C extends D implements I1, ..., In { [ R m() 〈 b | abstract 〉 ] }
L ::= interface I extends I1, ..., In { [ R m() [ default 〈 k | none 〉 ] ] }

Figure 1: FD language syntax

3 Preliminaries

Figure 2 shows some general typing judgements needed by FD, and the subtyp-
ing judgements for classes and interfaces.

S-Refl
T <: T

S-Trans
T <: V V <: W

T <: W

S-Sub
Γ ` k : U U <: T

Γ ` k : T

S-Class
class C extends D implements I1, ..., In{...}

C <: D ∀i C <: Ii

S-Intf
interface I extends I1, ..., In{...}

∀i I <: Ii

Figure 2: Basic typing rules

As in Featherweight Java, we use “lookup functions” (such as mtype(T )) and
“marker predicates” (such as T OK) in the inference rules to record information
about types. These will be introduced as they are used by the inference rules.

4 Compile-time vs runtime

One of the goals of this model is to present a formal procedure for resolving
references to a method m() in a class C among the many candidate choices con-
tributed by superclasses and interfaces. In languages like Java, method resolu-
tion is performed both at compile time (to ensure that methods resolve uniquely,
and that required methods are implemented, and to reject source files that do
not meet these requirements) and at run time (to perform linkage dynamically.)
It is important to ensure that resolution decisions made at compile time and
run time are consistent, but issues like separate compilation and dynamic link-
ing pose challenges to this goal, since class files compiled separately may not
provide a consistent view of the type hierarchy at run time.
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This model divides rules into two categories – typing-related (those beginning
with T-) and resolution-related (those beginning with R-). A compiler would
execute and enforce all the rules; the runtime would execute only the resolution
rules. In a well-typed program, the compiler and runtime view of the world
would be identical; in an inconsistently-typed program (say, due to separate
compilation), it may still be possible to perform method resolution at runtime
according to the R- rules.

5 Method typing

Figure 3 shows the typing rules for resolving the type of method m() in classes
and interfaces.

Figure 3 defines the following lookup functions and marker predicates:

• mtype(T ), which indicates the type of m() in type T . If m() is not a
member of T , then mtype(T ) will be nil.

• T SigOK, which indicates that the type T provides a consistent return
type for m(). The compiler should reject types for which T SigOK does
not hold, but T SigOK is not sufficient to declare that T is well-formed (For
example, T could have conflicting defenders or problems with covariant
overrides.)

We define the function lbif for computing an inclusive lower bound (under
subtyping) for a projection under f of a set of types. (The inclusive lower
bound for a set S is the lower bound of S if S contains its lower bound, and nil
(undefined) otherwise.) We define lbif (T1, ..., Tn) as follows:

lbif (T1, ..., Tn) =


f(Ti) if ∃i such that f(Ti) 6= nil, and

∀j 6=i [ f(Tj) = nil ∨ f(Ti) <: f(Tj) ]

nil otherwise

It is possible that there are multiple values of i that satisfy the conditions
for lbif (T1, ..., Tn); in that case, each of the f(Ti) will be subtypes of each other,
and therefore equivalent. We use lbimtype to determine whether a set of types
can contribute a consistent return type for the method m().

We also define the following shorthand for optional subtyping on lookup
functions:

T <̃: f(U) ≡ f(U) = nil ∨ T <: f(U)
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T-ClassConc

class C extends D implements I1, ..., In { T m() b }
Γ ` b : T ∀U∈{D,I1,...,In} [ U SigOK ∧ T <̃: mtype(U) ]

mtype(C) = T C SigOK

T-ClassAbs

class C extends D implements I1, ..., In { T m() abstract }
∀U∈{D,I1,...,In} [ U SigOK ∧ T <̃: mtype(U) ]

mtype(C) = T C SigOK

T-ClassNone

class C extends D implements I1, ..., In { }
∀U∈{D,I1,...,In} U SigOK T = lbimtype(D, I1, ..., In)

mtype(C) = T C SigOK

T-IntDef

interface I extends I1, ..., In { T m() default k }
Γ ` k : T ∀i [ Ii SigOK ∧ T <̃: mtype(Ii) ]

mtype(I) = T I SigOK

T-IntNoDef

interface I extends I1, ..., In { T m() [ default none ] }
∀i [ Ii SigOK ∧ T <̃: mtype(Ii) ]

mtype(I) = T I SigOK

T-IntInh

interface I extends I1, ..., In { }
∀i Ii SigOK T = lbimtype(I1, ..., In)

mtype(I) = T I SigOK

T-IntNone

interface I extends I1, ..., In { }
∀i [ Ii SigOK ∧ mtype(Ii) = nil ]

mtype(I) = nil I SigOK

T-Object
Object SigOK mtype(Object) = nil

Figure 3: Method typing

6 Defender methods

The rules so far apply (mostly) to the existing semantics of Java as well as
the Featherweight Defenders extension. We now explore the rules for declaring,
inheriting, and pruning defender methods (interface methods with defaults).
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A key aspect of inheritance for defender methods is pruning of less-specific
default-providing interfaces from consideration in the resolution process. In
Java, it is allowable for a class or interface to extend an interface both directly
and indirectly, as in the following example:

interface A { Object m() default k }

interface B extends A { Object m() default l }

class C implements A, B { }

Here, C implements A both directly and indirectly. This idiom is common as
a documentation device, but in Java 7 and earlier the additional declaration of
A has no effect, because it is already implicit in the extension of B. This behavior
should continue to hold true in the presence of extension methods.

The design of extension methods calls for “redundant” inheritance from less-
specific interfaces (such as A in the example above) to not be considered further
in the inheritance decision, except inasmuch as the less-specific interface has
already contributed to its subinterface.

If I and J each contribute a default method for m(), and I is a strict subtype
of J , then W is pruned from consideration in contributing a default. The R-
IntInh and R-ClassInh rules in figure 4 implement this pruning behavior.

Intuitively, the rules for method resolution behave as follows:

• A method defined in a type takes precedence over methods defined in
supertypes.

• Abstract methods in interfaces do not influence resolution.

• A method (concrete or abstract) inherited from a superclass takes prece-
dence over a default inherited from an interface.

• More specific default-providing interfaces take precedence over less specific
ones.

• If we are to resolve m() to a default method, it must be from the unique
most specific default-providing interface.

Figure 4 covers the rules for inheriting, overriding, and reabstracting de-
fender methods in interfaces. It defines the following lookup function:

• dcand(T ), which indicates the set of interfaces which could provide a de-
fender for m() in T .
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T-IntBody

interface I extends I1, ..., In { T m() default 〈 k | none 〉 }
I SigOK ∀i Ii OK

I OK

T-IntNoBody

interface I extends I1, ..., In { [ T m() ] }
I SigOK ∀i Ii OK | dcand(I) | = 0

I OK

T-IntInhBody

interface I extends I1, ..., In { [ T m() ] }
I SigOK ∀i Ii OK | dcand(I) | = 1
∃V ∈dcand(I) mtype(I) = mtype(V )

I OK

R-IntDef
interface I extends I1, ..., In { T m() default 〈 k | none 〉 }

dcand(I) = { I }

R-IntInh

interface I extends I1, ..., In { [ T m() ] }
S =

⋃
i dcand(Ii)

dcand(I) = {W ∈ S : ∀V ∈S V <: W ⇒ V = W }

R-ClassInh

class C extends D implements I1, ..., In { }
S =

⋃
U∈{ D,I1,...,In } dcand(U)

dcand(C) = {W ∈ S : ∀V ∈S V <: W ⇒ V = W }

Figure 4: Calculating defender candidates

7 Method inheritance in classes

All classes (except the root class Object) have a single superclass. We treat
a concrete method body and a declaration that the method is abstract in the
same way (collectively, we call these the method definition). A class inherits
method definitions from its superclass, unless the method is explicitly given a
new definition in the subclass (either a new body is provided or the method is
explicitly reabstracted). Figure 5 shows the rules for method body inheritance,
including the requirement that if a method’s return type is covariantly overrid-
den, any method definition from a superclass must be overridden at the same
point as the covariant override. Figure 5 defines the following lookup functions
and marker predicates:

• mprov(C), which indicates the provenance of the (possibly inherited)

6



T-ObjectBodyOK
Object BodyOK

T-ClassBody

class C extends D implements I1, ..., In { T m() 〈 b | abstract 〉 }
C SigOK D BodyOK ∀i Ii OK

C BodyOK

T-ClassNoBody

class C extends D implements I1, ..., In { }
C SigOK D BodyOK ∀i Ii OK

¬D HasDefn ∨ [ D HasDefn ∧ mtype(D) = mtype(C) ]

C BodyOK

R-ClassBody
class C extends D implements I1, ..., In { T m() 〈 b | abstract 〉 }

mprov(C) = C C HasDefn

R-ClassInhBody

class C extends D implements I1, ..., In { }
D HasDefn

mprov(C) = mprov(D) C HasDefn

Figure 5: Method body inheritance

method body for m() in C. It is the identity of the type providing the
body (or abstract declaration) for C.

• C HasDefn, which indicates that C or one of its superclasses has either
a method body or is explicitly declared abstract. If C HasDefn but not
C HasBody, then (a well-formed) C must be an abstract class.

• C BodyOK, which indicates that C is well-formed with respect to a declared
or inherited method body (or abstract declaration). A class is deemed to
be BodyOK if it has a valid body or abstract declaration, it inherits a
valid body or abstract declaration (and the return type for m() is not
covariantly overriden, either explicitly or implicitly), or inherits no body
or abstract declaration.

8 Method resolution

We are now able to define the resolution of m() in a class C which may inherit
its implementation from a superclass or from a defended method in an interface.

Figure 6 defines the following lookup functions and marker predicates:
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• mres(C), which indicates the resolution or m() in class C. Its value is the
identity of the type from which m() is inherited. The resolution would be
to a concrete or default method.

• C OK, which indicates that C does not contain any conflicting definitions
for m(). (Such as conflicting defaults, bad overrides, conflicts between the
return type specified in a body and the return type broadened through
covariant overrides, etc.) It does not mean that m() has been uniquely
resolved within C (either to a concrete body or to a default); it is allowable
for classes to be abstract.

• T HasBody, which indicates that T declares either a concrete method body
or a method default, depending on whether it is a class or interface. (It is
not inherited; it is strictly a property of the class declaration.)

T-NoDefault

class C extends D implements I1, ..., In { ... }
C BodyOK D OK

C HasDefn ∨ [ ¬C HasDefn ∧ | dcand(C) | = 0 ]

C OK

T-FromDefault

class C extends D implements I1, ..., In { ... }
C BodyOK D OK ¬C HasDefn | dcand(C) | = 1

∃J∈dcand(C) mtype(J) = mtype(C)

C OK

R-HasBody
class C extends D implements I1, ..., In { T m() b }

C HasBody

R-HasDef
interface I extends I1, ..., In { T m() default k }

I HasBody

R-ResolveImpl

class C extends D implements I1, ..., In { ... }
C HasDefn T = mprov(C) T HasBody

mres(C) = T

R-ResolveDef

class C extends D implements I1, ..., In { ... }
¬C HasDefn | dcand(C) | = 1 ∃J∈dcand(C) J HasBody

mres(C) = J

Figure 6: Resolution
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