The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Dynamic overloaded dispatch and generic type inference in Fortress

David Chase (presenter), Justin Hilburn, Victor Luchangco, Karl Naden, Guy Steele, Jean-Baptiste Tristan

Programming Languages Research Group, Oracle Labs
Fortress

• “Run your white board, in parallel!”
• Space-sensitive mathematical syntax
• Work-stealing load balancing
• Parallel nested transactions
• Generic functions, methods, traits, objects
 • Multi-arg dispatch overloaded functions
• Statically checked, dynamically inferred
Java vs. Fortress dispatch

class Foo {
 String data;
 public boolean equals(Foo x) {
 return data.equalsIgnoreCase(x.data);
 }
 // Fortress dispatch
 public boolean equals(Object x) {
 return false;
 }
 // Java dispatch
 public boolean equals(Object x) {
 return (x instanceof Foo) ?
 equals((Foo) x) : false;
 }
}
Generic overloading uses

Ring[+T]

Field[+T]

Number

Z

Number

Z_{64}

Z_{32}

Number

C

C_{64}

C_{32}

Number

R

R_{64}

R_{32}

Number

Q

Q_{64}

Q_{32}

TIMES[T <: Ring[T]]

(x: Mat[T], y:Mat[T]):Mat[T]

(x: Diag[T], y:Mat[T]):Mat[T]

(x: Mat[T], y:Diag[T]):Mat[T]

(x: Diag[T], y:Diag[T]):Diag[T]

(x: Mat[Bool], y:Mat[T]):Mat[T]

(x: Diag[Bool], y:Mat[T]):Mat[T]

(x: Diag[Bool], y:Diag[T]):Diag[T]
Quick type system

Any

Tuples (covariant)

Object

Arrows (invariant → covariant)

Traits

(possibly generic, invariant or covariant; possibly “self-less”)

Objects (possibly invariant-generic)

plus inferred unions and intersections

also declared type exclusion
Self-less generic types

trait CMPable[T] comprises T

abstract opr < (self, other:T):Boolean
opr > (self, other:T):Boolean = other < self
opr = (self, other:T):Boolean =
 ¬ (self < other ∧ other < self)

opr CMP (self, other:T):Comparison =
 if self < other then LessThan
 elif self > other then GreaterThan
 else Equals
endif
end
Example

CMP is overloaded, and includes generic entrypoints, and the outer type \((\text{Obj, Obj})\rightarrow \text{Comparison}\) is not generic.

Sort entrypoints into a most-to-least specific order and sequentially \textit{test applicability}. First success is best choice.
“Test applicability?”

• Pattern-match the argument type with the entrypoint’s signature type.

• Accumulate initial constraints on parameterized type occurrences in the signature.

• Propagate constraints across type parameters.

• Succeed if constrained sets are nonempty.

Is this well-defined? Is it efficient?
Type system restrictions

• All paths to Any finite

• Unions and Intersections inferred, not declared

• For each generic supertype, a minimum instantiation must be declared

• Each “self-less” trait is singly-inherited

• Function type constraints are scoped/ordered, with form declared-parameter-extends-expr

• NO CONTRAVARIANCE

• But we have a workaround for “useful” cases
Pattern-match and accumulate constraints

```plaintext
1: function MATCH(g:Type, V:Variance, s:Type)
2:   if s is a ground type then
3:     if V ≥ 0 then ⊗ co/invariant, require g <: s
4:       if ¬(g <: s) then dispatch fails
5:     if V ≤ 0 then ⊗ contra/invariant, require s <: g
6:       if ¬(s <: g) then dispatch fails
7:   else if s is a type parameter P then
8:     if V ≥ 0 then ⊗ co/invariant, require g <: P
9:       insert g into L_P
10:    if V ≤ 0 then ⊗ contra/invariant, require P <: g
11:       insert g into U_P
12:   else if s is an arrow type s_domain → s_range then
13:     if g is an arrow type g_domain → g_range then
14:       MATCH(g_domain, 0, s_domain)
15:       MATCH(g_range, V, s_range)
16:     else dispatch fails
17:   else if s is a tuple type (s_1, ..., s_m) then
18:     if g is a same-length tuple type (g_1, ..., g_m) then
19:       for 1 ≤ j ≤ m do
20:         MATCH(g_j, V, s_j)
21:       else dispatch fails
22: else if g is a union of types g_1, ..., g_m then
23:   ⊗ s is a constructed signature type
24:     if V = 0 then dispatch fails
25:   else
26:     for 1 ≤ j ≤ m do
27:       MATCH(g_j, V, s_j)
28:     else s is a constructed signature type T[s_1', ..., s_m']
29:   ⊗ g is not a union or intersection
30: else if g has some ancestor of the form T[… then
31:   let g' = the minimal ancestor T[g_1, ..., g_m] of g
32:     that has the form T[…]
33:     if (V = 0) ∧ (g ≠ g') then dispatch fails
34:     let (V_1, ..., V_m) = variances of T’s parameters
35:     for 1 ≤ j ≤ m do
36:       MATCH(g_j, V × V_j, s_j')
37:     else dispatch fails
38: ```

actual (ground) type of function arguments
entrypoint signature (includes type parameters)
compile-time constants for pattern-matching
an interesting part

29:  ⊙ $s$ is a constructed signature type $T[s'_1, \ldots, s'_m]$
30:  ⊙ $g$ is not a union or intersection
31:  if $g$ has some ancestor of the form $T[\_\_\_]$ then
32:      let $g' =$ the minimal ancestor $T[g_1, \ldots, g_m]$ of $g$
33:          that has the form $T[\_\_\_]$
34:      if $(V = 0) \land (g \neq g')$ then dispatch fails
35:      let $(V_1, \ldots, V_m) =$ variances of $T$'s parameters
36:      for $1 \leq j \leq m$ do
37:        MATCH($g_j, V \times V_j, s'_j$)
38:      else dispatch fails
Propagate constraints

Least Single Upper Bound

1: for \( j \) sequentially from \( n \) down to 1 do
2: \( l_j \leftarrow \text{LSUB}(\mathcal{L}_{P_j}) \)
3: iterate up from \( l_j \) through self-less constraints to simultaneous solution
4: if \( l_j \not<: \text{Bottom} \) then
5: for each declared self-ish upper bound \( \xi \) of \( P_j \) do
6: if \( \xi \) is a parametric signature type then
7: \( \text{MATCH}(l_j, +1, \xi) \)
8: for each \( u \) in \( \mathcal{U}_{P_j} \) do
9: if \( l_j \not<: u \) then
10: dispatch fails
11: \(|\mathcal{U}_{P_j}| = 0\) case can be spotted at compile time.
Worked example

Suppose actual inputs to CMP are a pair of List[String], e.g.,
x = <“cat”, “dog”> and y = <“bat”, “rat”>

CMP(x: String, y: String)
   IF NOT( g subtype-of (String, String) )
   THEN dispatch fails
   ENDIF

CMP(x: Integer, y: Integer): Comparison
   IF NOT( g subtype-of (Integer, Integer) )
   THEN dispatch fails
   ENDIF

CMP[T extends CMPable[T]] (x: CMPable[T], y: CMPable[T]): Comparison
   IF g is a tuple type (g_1, g_2) THEN
      // Recursive calls expanded
      IF g_1 is a union THEN ...
      ELSIF g_1 extends CMPable[something] THEN ...
      ELSE dispatch fails
      ENDIF
      IF g_2 is a union THEN ...
      ELSIF g_2 extends CMPable[something] THEN ...
      ELSEdispatch fails
      ENDIF
      ELSE dispatch fails
   ENDIF
   ...

© 2012 Oracle Corporation
Example cont.

CMP[T extends CMPable[T]] (x:List[T], y:List[T]): Comparison

IF g is a tuple type (g_1, g_2) THEN
  IF g_1 is a union THEN ...
  ELSIF g_1 extends List[g_1_a] THEN
    // match (g_1_a, 0, T) // invariant List
    insert g_1_a into L_T
    insert g_1_a into U_T
  ELSE dispatch fails
  ENDIF
  IF g_2 is a union THEN ...
  ELSIF g_2 extends List[g_2_a] THEN
    // match (g_2_a, 0, T) // invariant List
    insert g_2_a into L_T
    insert g_2_a into U_T
  ELSE dispatch fails
  ENDIF
ELSE dispatch fails
ENDIF

l_T := LSUB(L_T)
// Self-less constraint check
IF l_T extends CMPable[l_T’] THEN l_T := l_T’
ELSE dispatch fails
ENDIF
// No self-ish constraints
FOR u IN U_T DO
  IF NOT l_T extends u THEN dispatch fails ENDIF
Different input

\[ x = \langle \text{"cat"}, \text{"dog"} \rangle \text{ and } y = \langle 3, 4 \rangle \]

**CMP[T extends CMPable[T]] (x:List[T], y:List[T]): Comparison**

IF g is a tuple type (g_1, g_2) THEN
  IF g_1 is a union THEN ...
  ELSIF g_1 extends List[g_1_a] THEN
    // match (g_1_a, 0, T) // invariant List example
    insert g_1_a into L_T
    insert g_1_a into U_T
  ELSE dispatch fails
  ENDIF
  IF g_2 is a union THEN ...
  ELSIF g_2 extends List[g_2_a] THEN
    // match (g_2_a, 0, T) // invariant List example
    insert g_2_a into L_T
    insert g_2_a into U_T
  ELSE dispatch fails
  ENDIF
ELSE dispatch fails
ENDIF

l_T := LSUB(L_T)
// Self-less constraint check
IF l_T extends CMPable[l_T'] THEN l_T := l_T'
ELSE dispatch fails
ENDIF
// No self-ish constraints
FOR u IN U_T DO
  IF NOT l_T extends u THEN dispatch fails ENDIF
  FAIL!
Run-time type operations

- A subtype B? (what if A, B generic?)
- A join/lsub B
- A instanceof G[T]?, minimum value of T
Longest Erased Path to Any

- $\text{LEPA(Any)} = 0,$
  $\text{LEPA(Object)} = 1,$
  $\text{LEPA(trait } T) = 1 + \max(\{\text{LEPA}(S) \mid T \text{ extends } S\})$

- Syntactic definition, straight from declarations.
A subtype \( B = \text{LEPA}(A) \geq \text{LEPA}(B) \land \) 
\( \text{Stem}(B) \in \text{Supers}(A)[\text{LEPA}(B)] \land \) 
\( \{ \text{compare Supers}(A)[\text{LEPA}(B)].\text{args with } B.\text{args} \} \)
JVM issues

• Current implementation makes heavy use of applicative caches (declared volatile, CAS for update, no-lock reads). Volatile inhibits optimization by JIT.

• Type data structures are initialized lazily (in a concurrent context), but then never change.

• Should we use method handles and invokedynamic?

• Type unions, intersections, tuples, and arrows require special treatment; cannot practically be pre-declared as supertypes.

• Our “type constants” might not look like constants to the JIT optimizer.

• Some (important) optimization opportunities for dispatch itself appear after only generic instantiation (AT RUNTIME)
JVM changes?

- Lighter-weight volatile? (No. JMM scary!)
- Write-once variables (lazy final)
- Idempotent (pure-mostly) methods? (Known tech)
- Interface injection? (Make more fast paths, allow better mapping onto JVM types)
- Unerased generics? (Supporting “our” type operations? or not?)
Questions?
Likely optimizations

- Indexed (vtable) dispatch as first step into various alternatives.
- Splitting dispatch search when partial order contains articulation points.
- Redundancy elimination across dispatch tests.
- Clause reordering (common first)
- Type erasure or non-canonicalization as an optimization (type bindings not always used).
Contravariance-lack-hack

Replace each nominally contravariant occurrence of $T$ with $T_k$, adding invariant $T_k$ before $T$ in the static parameter list, and the constraint “$T$ extends $T_k$”.

Example:

$\text{map}[T, U]( \ l: \text{MutList}[T], \ f:T \rightarrow U \ ) : \text{List}[U]$

rewrites to

$\text{map}[T_a, T <: T_a, U]( \ l: \text{MutList}[T], \ f:T_a \rightarrow U \ ) : \text{List}[U]$
Dynamic inference uses

\textbf{ApplBalBinTree [ covariant T extends CMPable[T] ]}

An object (leaf) type.
23 or fewer 8-bit non-zero chars.
Immediate data, fast compares.

\begin{verbatim}
lookup[ K extends CMPable[K], V ]
    (key:K, tree:ABBT[ K,V ]): Maybe[V] = do
    c = key CMP tree.key
    if c = Eq then Some(tree.value)
    elif c = Lt then if tree.left.isSome
        then lookup(key, tree.left.unwrap)
        else None[V] end
    elif tree.right.isSome
        then lookup(key, tree.right.unwrap)
        else None[V] end
end end
\end{verbatim}
Handling intersections

1:  \langle \text{intersection subtype of constructed signature type?} \rangle =
2:  \text{ else if } g \text{ is an intersection of types } g_1, \ldots, g_m \text{ then}
3:  \text{ \hspace{1em} } \ast s \text{ is a constructed signature type}
4:  \text{ \hspace{1em} } \ast n \text{ is the number of method type parameters}
5:  \text{ \hspace{1em} } \text{ if } V = 0 \text{ then } \text{dispatch fails}
6:  \text{ else}
7:  \text{ \hspace{1em} } \text{ for } 1 \leq i \leq n \text{ do}
8:    \text{ \hspace{2em} } \text{Save existing bound sets } L_{P_i} \text{ and } U_{P_i}
9:    \text{ \hspace{2em} } \text{LBT}_{P_i} \leftarrow \text{Any} \quad \ast \text{Lower bound type}
10:   \text{ \hspace{2em} } \text{UBT}_{P_i} \leftarrow \text{Bottom} \quad \ast \text{Upper bound type}
11: \text{ \hspace{1em} } \text{var anymatch} = \text{false}
12: \text{ \hspace{1em} } \text{for } 1 \leq j \leq m \text{ do}
13:     \text{ \hspace{2em} } \text{for } 1 \leq i \leq n \text{ do}
14:        \text{ \hspace{3em} } L_{P_i} \leftarrow \{ \}
15:        \text{ \hspace{3em} } U_{P_i} \leftarrow \{ \}
16: \text{ \hspace{1em} } \text{try}
17:     \text{ \hspace{2em} } \text{MATCH}(g_j, V, s) \quad \ast \text{sole use of } j \text{ is here}
18:     \text{ \hspace{2em} } \text{for } 1 \leq i \leq n \text{ do}
19:        \text{ \hspace{3em} } \text{LBT}_{P_i} \leftarrow \text{LBT}_{P_i} \cap \bigcup_{g' \in L_{P_i}} g'
20:        \text{ \hspace{3em} } \text{UBT}_{P_i} \leftarrow \text{UBT}_{P_i} \cup \bigcap_{g' \in U_{P_i}} g'
21: \text{ \hspace{1em} } \text{anymatch} \leftarrow \text{true}
22: \text{ \hspace{1em} } \text{catch dispatch failure}

\bigcap g_i <: A[T], \text{true if one or more } g_i <: A[T].
Largest set of } g_i \text{ gets most specific result.
Relies on distribution of intersection into generics.
Proof that intersection distributes

Suppose \( G[ \text{covariant } P] \).
\( A \cap B <: A, A \cap B <: B, \)
therefore \( G[A \cap B] <: G[A], G[A \cap B] <: G[B], \)
therefore \( G[A \cap B] <: G[A] \cap G[B]. \)

Suppose \( G[A] \cap G[B] \not<: G[A \cap B]. \)
Then there is a \( v \) in \( G[A] \cap G[B] \) not in \( G[A \cap B] \), and \( v \)'s ilk is an object type \( V. \) \( V <: G[A], V <: G[B], \) therefore there is \( T \) such that \( T <: A, T <: B, V <: G[T]. \)
But \( T <: A \cap B, \) implying that \( v \) in \( V <: G[T] <: G[A \cap B], \) a contradiction. And \( T \) is not bottom, because \( G[T] \) was declared as a supertype of \( V. \)
Self-less example

trait Foo[T] comprises T
  opr +(self, y: T): T
  opr -(self): T
  opr -(self, y: T): T = self + (-y)
  double(self): T = self + self
end

object Bar(content: ZZ32) extends Foo[Bar]
  opr +(self, y: Bar): Bar = Bar(content + y.content)
  opr -(self): Bar = Bar(-content)
end