
<Insert Picture Here>

Implementing lambda expressions in Java
Brian Goetz
Java Language Architect

Adding lambda expressions to Java

•  In adding lambda expressions to Java, the obvious
question is: what is the type of a lambda expression?
•  Most languages with lambda expressions have some notion

of a function type in their type system
•  Java has no concept of function type
•  JVM has no native (unerased) representation of

function type in type signatures

•  Adding function types would create many questions
•  How do we represent functions in VM type signatures?
•  How do we create instances of function-typed variables?
•  How do we deal with variance?

•  Want to avoid significant VM changes

We could “just” use MethodHandle

•  At first, this seems “obvious”
•  Desugar lambdas expressions to methods, and

represent as MethodHandles in signatures
•  But, like erasure on steroids

•  Can’t overload two methods that take differently
“shaped” lambdas

•  Still would need to encode the erased type information
somewhere

•  Is MH invocation performance competitive with bytecode
invocation yet?

•  Conflates binary interface with implementation

Functional interfaces

•  Java has historically represented functions using
single-method interfaces like Runnable

•  So, let’s make things simple and just formalize that
•  Give them a name: “functional interfaces”
•  Always convert lambda expressions to instance of a

functional interface

•  Compiler figures out the types – lambda is converted to
Predicate<Person>

•  How does the lambda instance get created?
•  How do other languages participate in the lambda fun?

interface Predicate<T> { boolean test(T x); }

adults = people.filter(p -> p.getAge() >= 18);

We could “just” user inner classes

•  We could define that a lambda is “just” an inner class
instance (where the compiler spins the inner class)
•  p -> p.age < k translates to

class Foo$1 implements Predicate<Person> {
 private final int $v0;
 Foo$1(int v0) { this.$v0 = v0; }
 public boolean test(Person p) {
 return p.age < $v0;
 }
}

•  Capture == invoke constructor (new Foo$1(k))
•  One class per lambda expression – yuck
•  Would like to improve over inner classes

•  If we define things this way, we’re stuck with inner class
behavior forever

•  Back to that “conflates binary representation with
implementation” problem

Stepping back…

•  We would like to use a binary interface that doesn’t
commit us to a specific implementation
•  Inner classes have too much baggage
•  MethodHandle is too low-level, is erased
•  Can’t force users to recompile, ever, so have to pick now

•  What we need is … another level of indirection
•  Let the static compiler emit a recipe, rather than imperative

code, for creating a lambda
•  Let the runtime execute that recipe however it deems best
•  And make it darned fast
•  Sounds like a job for invokedynamic!

Its not just for dynamic languages
anymore

•  Where’s the dynamism here?
•  All the types involved are static
•  What is dynamic here is the code generation strategy

•  We use indy to embed a recipe for constructing a
lambda at the capture site
•  The capture site is call the lambda factory
•  Invoked with indy, returns a lambda object

•  The bootstrap method is called the lambda metafactory
•  Static arguments describe the behavior and target type
•  Dynamic arguments are captured variables (if any)

•  At first capture, a translation strategy is chosen
•  Subsequent captures bypass the (slow) linkage path

Desugaring lambdas to methods

•  First, we desugar the lambda to a method
•  Signature matches functional interface method, plus

captured arguments prepended
•  Captured arguments must be effectively final

•  Simplest lambdas desugar to static methods, but some
need access to receiver, and so are instance methods

Predicate<Person> isAdult = p -> p.getAge() >= k;

private static boolean lambda$1(int capturedK, Person p) {
 return p.getAge() >= capturedK;
}

Lambda capture

•  Lambda capture is implemented by an indy
invocation
•  Static arguments describe target type, behavior
•  Dynamic arguments describe captured locals
•  Result is a lambda object

Predicate<Person> isAdult = p -> p.getAge() >= k;

isAdult = indy[bootstrap=LambdaMetafactory,
 type=MH[Predicate.test],
 impl=MH[lambda$1]](k);

The metafactory API

•  Lambda metafactory looks like:

•  Use method handles to describe both target name/
type descriptor and implementation behavior
•  Metafactory semantics deliberately kept simple to enable

VM intrinsification
•  “Link methods of target type to

body.insertArgs(dynArgs).asType(target.type())”

metaFactory(Lookup caller, // provided by VM
 String invokedName, // provided by VM
 MethodType invokedType, // provided by VM
 MethodHandle target, // target type
 MethodHandle body) // lambda body

Candidate translation strategies

•  The metafactory could spin inner classes dynamically
•  Generate the same class the compiler would, just at runtime
•  Link factory call site to constructor of generated class

•  Since dynamic args and ctor arg will line up
•  Our initial strategy until we can prove that there’s a better one

•  Alternately could spin one wrapper class per interface
•  Constructor would take a method handle
•  Methods would invoke that method handle
•  Use ClassValue to cache wrapper for interface

•  Could also use dynamic proxies or MethodHandleProxy
•  Or VM-private APIs to build object from scratch, or…

Indy: the ultimate lazy initialization

•  For stateless (non-capturing) lambdas, we can
create one single instance of the lambda object and
always return that
•  Very common case – many lambdas capture nothing
•  People sometimes do this by hand in source code – e.g.,

pulling a Comparator into a static final variable

•  Indy functions as a lazily initialized cache
•  Defers initialization cost to first use
•  No overhead if lambda is never used
•  No extra field or static initializer
•  All stateless lambdas get lazy init and caching for free

Indy: the ultimate procrastination aid

•  By deferring the code generation choice to runtime, it
becomes a pure implementation detail
•  Can be changed dynamically
•  We can settle on a binary protocol now (metafactory API)

while delaying the choice of code generation strategy
•  Moving more work from static compiler to runtime

•  Can change code generation strategy across VM versions,
or even days of the week

Indy: the ultimate indirection aid

•  Just because we defer code generation strategy to
runtime, we don’t have to pay the price on every call
•  Metafactory only invoked once per call site
•  For non-capturing case, subsequent captures are free

•  MF links to new CCS(MethodHandles.constant(...))
•  For capturing case, subsequent capture cost on order of a

constructor call / method handle manipulation
•  MF links to constructor for generated class

Performance costs

•  Any translation scheme imposes costs at several
levels:
•  Linkage cost – one-time cost of setting up capture
•  Capture cost – cost of creating a lambda
•  Invocation cost – cost of invoking the lambda method

•  For inner class instances, these correspond to:
•  Linkage: loading the class
•  Capture: invoking the constructor
•  Invocation: invokeinterface

Performance example – capture cost

•  Oracle Performance Team measured capture costs
•  4 socket x 10 core x 2 thread Nehalem EX server
•  All numbers in ops/uSec

•  Worst-case lambda numbers equal to inner classes
•  Best-case numbers much better
•  And this is just our “fallback” strategy

Single-threaded Saturated Scalability

Inner class 160 1407 8.8x
Non-capturing
lambda

636 23201 36.4x

Capturing lambda 160 1400 8.8x

Not just for the Java Language!

•  The lambda conversion metafactories will be part of
java.lang.invoke
•  Semantics tailored to Java language needs
•  But, other languages may find it useful too!

•  Java APIs will be full of functional interfaces
•  Collection.filter(Predicate)

•  Other languages probably will want to call these APIs
•  Maybe using their own closures
•  Will want a similar conversion

•  Since metafactories are likely to receive future VM
optimization attention, using platform runtime is likely
to be faster than spinning your own inner classes

Possible VM support

•  VM can intrinsify lambda capture sites
•  Capture semantics are straightforward properties of method

handles
•  Capture operation is pure, therefore freely reorderable
•  Can use code motion to delay/eliminate captures

•  Lambda capture is like a “boxing” operation
•  Essentially boxing a method handle into lambda object
•  Invocation is the corresponding “unbox”
•  Can use box elimination techniques to eliminate capture

overhead
•  Intrinsification of capture + inline + escape analysis

Serialization

•  No language feature is complete without some
interaction with serialization
•  Users will expect this code to work

•  We can’t just serialize the lambda object
•  Implementing class won’t exist at deserialization time
•  Deserializing VM may use a different translation strategy
•  Need a dynamic serialization strategy too!

•  Without exposing security holes…

interface Foo extends Serializable {
 public boolean eval();
}
Foo f = () -> false;
// now serialize f

Serialization

•  Just as our classfile representation for a lambda is a
recipe, our serialized representation needs to be to
•  We can use readResolve / writeReplace
•  Instead of serializing lambda directly, serialize the recipe

(say, to some well defined interface SerializedLambda)
•  This means that for serializable lambdas, MF must provide

a way of getting at the recipe
•  We provide an alternate MF bootstrap for that

•  On deserialization, reconstitute from recipe
•  Using then-current translation strategy, which might be

different from the one that originally created the lambda
•  Without opening new security holes
•  See paper for details

Serialization

•  We record which class captured a lambda
•  And hand the recipe back to that class for reconstitution
•  Eliminating need for privileged magic in metafactory

private static $deserialize$(SerializableLambda lambda) {
 switch(lambda.getImplName()) {
 case "lambda$1":
 if (lambda.getSamClass().equals("com/foo/SerializableComparator")
 && lambda.getSamMethodName().equals("compare")
 && lambda.getSamMethodDesc().equals("...")
 && lambda.getImpleReferenceKind() == REF_invokeStatic
 && lambda.getImplClass().equals("com/foo/Foo")
 && lambda.getImplDesc().equals(...)
 && lambda.getInvocationDesc().equals(...))
 return indy(MH(serializableMetafactory),
 MH(invokeVirtual
SerializableComparator.compare),
 MH(invokeStatic lambda$1))
(lambda.getCapturedArgs()));
 break;
 ...

My VM wish-list

•  Intrinsification of functional interface conversion
•  Better support for functional data structures

•  When we translate a typical filter-map-reduce chain, we create
an expression tree whose leaves are lambdas

•  Use of Indy allows us to turn the leaves into constants
•  But we’d like to be able to turn the intermediate nodes into

constants too!
•  Often practical, because these are value classes

•  Very common pattern in functional languages
•  I’ll take the leaves, but I’d rather have the whole tree

•  Control over whether CallSite state is shared or cleared
on cloning / inlining
•  Sometimes I want yes, sometimes I want no
•  One-size-fits-all not good enough

