
© 2010 SpringSource, A division of VMware. All rights reserved

Mixed language project compilation Mixed language project compilation
in Eclipse: in Eclipse:
Java and GroovyJava and Groovy

Andy Clement, SpringSource/VMware

AgendaAgenda

� Me

� Groovy-Eclipse version 2

◦ Quick review of Joint Compilation

◦ A new approach in Eclipse … and why

◦ The tricky parts

◦ What had to change… in groovy and in
eclipse

Joint Compilation: What is it?Joint Compilation: What is it?

� For compilation of multi-language codebases

◦ e.g. java/groovy in my case

◦ Multiple compilers working together

◦ What makes it an interesting problem?

� dependencies Top.groovy

class Top {
}

Middle.java

class Middle extends Top{
}

Bottom.groovy

class Bottom extends Middle {
}

Joint Compilation: Breaking it downJoint Compilation: Breaking it down

Groovyc

Parse groovy

Create stubs

Continue groovy compilation

Resolve refs using javac output

write out .class files for groovy code

javac

compile java (and stubs)

resolve references (using stubs)

write out .class files for all

Joint compilation: observationsJoint compilation: observations

� Simple communication

◦ Using text files on disk

� Java stubs for groovy>javac

� .class files for javac>groovyc

◦ Some wasted processing

� Javac stub parsing and compilation to .class files

� Can we do better?

◦Why would we want to?

Groovyc
javac

Why Why change the approach?change the approach?

� Groovy-Eclipse pre v2.0
◦ Used joint compilation, but proved quite unreliable

◦ Eclipse JDT just didn’t understand groovy that well

� Can we make Eclipse more easily understand?
◦ Eclipse compiler can be extended (AspectJ does it)

◦ Groovy compiler phases well suited to ECJ
integration

◦ Will IDE functionality spring to life?

Building language IDE support is extremely expensive

Groovy Groovy Eclipse v2Eclipse v2

� The Plan
• Continue with principle of joint compilation
� Compilers working together

� Understand each others data structures to a degree

• Reduce unnecessary processing

• Modify ECJ in a language independent way
� (more likely to get changes into Eclipse base)

� Measures of success
• Do some Eclipse JDT features ‘just work’ for
groovy

Compiler integration: all the way Compiler integration: all the way
downdown
� Both compilers integrate at each of these
stages:

• Parsing of the text into an internal
representation

• Resolution of the references using the rules
of that language

• Code generation

In Groovy Eclipse v2.0In Groovy Eclipse v2.0
Eclipse

Sees some bunch of source

Invoke correct compiler for each:

Dependency recorder

(incremental compilation)

Output .class files to disk

ECJ

PARSE .java

return .class files

GROOVYC

PARSE .groovy

GENERATE CODE GENERATE CODE

return .class files

RUN RESOLUTION

Data structuresData structures

� No new meta-model

• We’re in Eclipse, use the eclipse structures

� Languages that can be interacted with from Java will
have an eclipse compiler representation

� Eager mapping from groovy to ECJ

� Lazy mapping from ECJ to groovy

DemoDemo

� Groovy-Eclipse

The benefitsThe benefits
� No disk communication
◦ No stub creation

◦ Some translation between groovy and eclipse structures where
necessary

� Incremental compilation just works (!)
◦ And across eclipse restarts

� Usable as a batch compiler
◦ ECJ can be used from Ant or command line

� Unexpected benefits
◦ ECJ checks some groovy structures,

� e.g. was checking generics

Of course I’m lying…Of course I’m lying…

� It wasn’t all straightforward

◦ Reconciling

� Not all UI functionality is free

◦ Syntax highlighting, inferencing, navigation,
code assist

◦ But built more rapidly because of the
underlying architecture

Of course I’m lying…Of course I’m lying…

� Ongoing problems handling 1.6/1.7/1.8 of
groovy

� I am a now a patch monkey �
◦ Changes required to the eclipse compiler
� Versions 3.4/3.5/3.6 all different

◦ Changes required to the groovy compiler
� Versions 1.6/1.7 and shortly 1.8

� Really want to get these patches into those
base compilers – what kinds of change?

What kinds of change: groovycWhat kinds of change: groovyc
� Needed to improve parser recovery
◦ In the IDE, the compiler is usually seeing broken code

� Parser needs to try its best to get to the end of the file

◦ Comment recording

◦ AST node positioning

� Resolving and ClassNodes
◦ More than two kinds of resolved ClassNodes

<demo>

class Foo {
void moo() {

new String().
}

}

Positions: beforePositions: before

Positions: afterPositions: after

What kinds of change: ECJWhat kinds of change: ECJ

� As minimal as possible
◦ Keep patch small

◦ Do not damage Java compilation

� Do not mention ‘groovy’ anywhere
⇒Although changes are groovy shaped

� All parser creates intercepted/redirected

� Visibility changes to allow subclassing

� Error handling adjustments
◦ Defer to groovy

7/28/201018

And finallyAnd finally

� AST transforms

• Really complicate things

• The new architecture actually enables better
support for them

<demo>

The endThe end

� Groovy-Eclipse v2 release is based on this architecture
◦ a huge improvement over version 1
◦ Based on previous experience (AJDT), effort to get to this
stage reduced by this approach

� What next?
◦ Eclipse debugger modifications
◦ Feeding changes back to the eclipse base

Questions?
andy.clement@springsource.com

