Mixed language project compilation
in Eclipse:
~" Java and Groovy

Andy Clement, SpringSource/VMware

Agenda

* Me
* Groovy-Eclipse version 2

> Quick review of Joint Compilation
> A new approach in Eclipse ... and why
° The tricky parts

> What had to change... in groovy and in
eclipse

Joint Compilation:What is it?

* For compilation of multi-language codebases
° e.g.java/groovy in my case
> Multiple compilers working together
> What makes it an interesting problem?

dependencies Top.groovy

class Top {
}

Middle. java

class Middle extends Top{
}

Bottom.groovy

class Bottom extends Middle {
}

Joint Compilation: Breaking it down

Groovyc

Parse groovy

Create stubs javac
compile java (and stubs)

resolve references (using stubs)

write out .class files for all

<

Continue groovy compilation

Resolve refs using javac output

write out .class files for groovy code

Joint compilation: observations

 Simple communication Groowye

: : : b javac
> Using text files on disk j J

Java stubs for groovy>javac

.class files for javac>groovyc
> Some wasted processing
Javac stub parsing and compilation to .class files

e Can we do better?
> Why would we want to!?

Why change the approach!?

* Groovy-Eclipse pre v2.0
> Used joint compilation, but proved quite unreliable
o Eclipse |DT just didn’t understand groovy that well

e Can we make Eclipse more easily understand?
o Eclipse compiler can be extended (Aspect] does it)

> Groovy compiler phases well suited to EC]J
integration

> Will IDE functionality spring to life?

Building language IDE support is extremely expensive

Groovy Eclipse v2
e The Plan

 Continue with principle of joint compilation

Compilers working together
* Understand each others data structures to a degree

* Reduce unnecessary processing
* Modify EC] in a language independent way
(more likely to get changes into Eclipse base)
e Measures of success

* Do some Eclipse |DT features ‘just work’ for
groovy

Compiler integration: all the way

down

* Both compilers integrate at each of these
stages:

* Parsing of the text into an internal
representation

* Resolution of the references using the rules
of that language

* Code generation

In Groovy Eclipse v2.0

Eclipse
Sees some bunch of source ECJ GROOVYC
Invoke correct compiler for each: .
P N[PARSE java PARSE .groovy
4
N RUN RESOLUTION
|IGENERATE CODE|| ||[GENERATE CODE
4
return .class files return .class files
Dependency recorder

(incremental compilation)

Output .class files to disk

Data structures

e No new meta-model

* We're in Eclipse, use the eclipse structures

Languages that can be interacted with from Java will
have an eclipse compiler representation

Eager mapping from groovy to EC]
Lazy mapping from ECJ to groovy

Demo

* Groovy-Eclipse

The benefits

e No disk communication
> No stub creation

> Some translation between groovy and eclipse structures where
necessary

* Incremental compilation just works (!)
> And across eclipse restarts

e Usable as a batch compiler
> ECJ can be used from Ant or command line

e Unexpected benefits

> ECJ checks some groovy structures,
e.g. was checking generics

Of course I'm lying...

e [t wasn’t all straightforward

> Reconciling

* Not all Ul functionality is free
> Syntax highlighting, inferencing, navigation,
code assist

° But built more rapidly because of the
underlying architecture

Of course I'm lying...

e Ongoing problems handling 1.6/1.7/1.8 of
groovy

* | am a now a patch monkey ®

> Changes required to the eclipse compiler
Versions 3.4/3.5/3.6 all different

> Changes required to the groovy compiler
Versions 1.6/1.7 and shortly 1.8

» Really want to get these patches into those
base compilers — what kinds of change!

What kinds of change: groovyc

* Needed to improve parser recovery
° In the IDE, the compiler is usually seeing broken code

class Foo {
void moo() {
new String().
ks

¥

> Comment recording

> AST node positioning
* Resolving and ClassNodes

> More than two kinds of resolved ClassNodes
<demo>

Positions: before

) Gravy.groovy 2

1
@ 2 @SuppressWarnings("cast")
3 class Gravy implements Comparable<String> {

4
s 5 Stack plates;
6
e 7 Generic<String> gs;
8
9}
1@

11 class Generic<T extends Number> {
12

13 }

14 |

Positions: after

(@ stackgroowy [(&) HelloSpockgrooy [[2) DibDabs.groovy ({2) Gravygroowy £, ™1
W 1
2 @SuppressWarnings("cast")
@ 3 class Gravy implements Comparable<String> {

Stack plates;

Generic<String> g¢gs;

W oo~

}
10

11 class Generic<T extends Number> {
1

13 }

14 |

What kinds of change: EC]

* As minimal as possible
> Keep patch small
- Do not damage Java compilation

* Do not mention ‘groovy’ anywhere
—Although changes are groovy shaped

» All parser creates intercepted/redirected
* Visibility changes to allow subclassing

* Error handling adjustments
> Defer to groovy

And finally

o AST transforms
* Really complicate things

* The new architecture actually enables better
support for them

<demo>

The end

e Groovy-Eclipse v2 release is based on this architecture
° a huge improvement over version |

> Based on previous experience (AJDT), effort to get to this
stage reduced by this approach

* What next!?
> Eclipse debugger modifications
> Feeding changes back to the eclipse base

Questions!
andy.clement@springsource.com

