Performance comparisons of
a and Groovy

Jochen Theodorou
Groovy Project Tech Lead
SpringSource Germany



Groovy Is a strong and dynamic
typed language with static
ents

Groovy Intro




* Dynamic language

 Has an MOP (add/remove/update methods)

* |Instance based multimethods

* Multi threaded (uses java threads)

* Runtime class generation or compilation to file

* Joint f Groovy and Java (or Scala)

ses with all signatures

Groovy Intro



* Tight integration with Java (Groovy extends
Java extends Groovy)

» Support for generic signature
e Support for annotations
* In Groovy 1.7: Inner classes

* QOverl ds

Groovy Intro



* Dynamic typing

» Static typing possible, but with a different
concept

» Supports java security model
* Native Java Bean property support

Groovy Intro



Differences to Java:

* Array Init syntax is not supported

« Semis are optional

* No generics testing in expressions
» Parents are partially optional

* N

ard classes

Groovy Intro



Important Projects:

Grails for Web Applications

Griffon for Swing Applications

Gradle for Bui

Groovy Intro




= -
Groovy 1.6 Callsite Caching:

e Class stores an CallSite[]

o Callsite becomes invalid on meta class
operations

* meta class might be changed from a different
thread

t be precreated, use
ated

Groovy Intro



Callsite caching

Callsite MetaClass
fib(n) » select method )
cache create callable

v

Invoke

Groovy Intro



Problem:

Multi threaded changes to
meta classes require a

ynchronized

call site

Groovy Intro




Loops are often optimized by loop unrolling

int x = 0;
for(int i=0; i<3; i++) x++;




R
My Example:

int ¢ = Integer.parselnt(args[0]);
int x = 0;
while (x<c) x++;

ved at runtime!



Proof:




Situation in Groovy:

35.000

30.000

25.000

20.000

)
E

+ 15.000 - groovy_x

10.
9




* Loop unrolling might be possible

* Removing the code is not

* This makes code blocks larger than needed
Does timizations




2.500

java_V

2.000

private volatile int t = O;
public void loop(int n) {

1.500

. ) ¥ java_x
|nt X — O, g =®-groovy o
1.000 V.V java V

while (x<n
if




The usage of volataile
prevents the code being
optimized away

to this!?



25.000

java_int
public int fib(int n) {
If(n<2) return n; E g0

return fib(n-1) +




000000

g ro OV y _X 20.000

def fib(n) {
If(n<2) return n
return fib(n-1) +

time

- groovy_X
=& java_int




Is Groovy slow?

Are the programs equal? 3 = roowy sow

down




To perform n<2 in Groovy we actually do:
n.compareTo(2)<0

- n iIs Integer

ed directly
) with primitives is faster



To perform x+y in Groovy we actually call:

DGM#plus(int x,int y) {
return x+y;

J

- X and y exist as Integer on the stack
- to do x+ to unbox x and y
- the xed again

- method




Even if the Java program is
changed to use Integer, the
performance is about the same.

Boxi es cost, but not as
In the low speed




Are method calls responsible?




Java using
Biginteger
compared with
Groovy using
Biginteger

factor

- slow down




* Hotspot needs much longer for Groovy

» Groovy has an addional startup penalty

‘about 50% slower




fast path compiler:

250%

» "private” allows a
direct method call

» optional typing allows
usage of primitive
values -

150%

time

== groovy slow
down




groovy o
by private enabled

direct method call def fib(n) {

fib_p(n)
W

private int fib_p(int x) {
' rnn
eturn fib_p(n-1) +




* more clean stack trace
* less bytecode generation at runtime
* less class loading problems
I ared to generating




* Agent cannot attach itself ot its own VM

» Continously rewriting methods seems to cause
problems

This causes Problems if groovy is used:
*lnar

GSoc 2008
Chanwit Kaewkasi
http://code.google.com/p/gjit/

Instrumentation based Hotspot



Replacing the method content with a
callable is not enough

e Stack trace will be even more problematic to
read (line number and file can be retained,

class name not)

te code generation with its

* Requi
gen problems (annok?)

ckage

Runtime generated Callables



 Microbenchmarks are EVIL!
* What do we need that speed for?

* If you are trying to be as fast as Java, you have
to fight smallest problems

* Possi

Conclusion

utlons for us, are not always




	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32

