

Performance comparisons of
Java and Groovy

Jochen Theodorou
Groovy Project Tech Lead
SpringSource Germany

Groovy Intro

Groovy is a strong and dynamic
typed language with static

elements

Groovy Intro

● Dynamic language
● Has an MOP (add/remove/update methods)
● Instance based multimethods
● Multi threaded (uses java threads)
● Runtime class generation or compilation to file
● Joint compilation of Groovy and Java (or Scala)
● Compiles to normal classes with all signatures

visible

Groovy Intro

● Tight integration with Java (Groovy extends
Java extends Groovy)

● Support for generic signature
● Support for annotations
● In Groovy 1.7: Inner classes
● Overloaded Methods
● Support for closures
● Duck typing

Groovy Intro

● Dynamic typing
● Static typing possible, but with a different

concept
● Supports java security model
● Native Java Bean property support

Groovy Intro

● Array init syntax is not supported
● Semis are optional
● No generics testing in expressions
● Parents are partially optional
● Native lists and maps
● Additional loop constructs
● Additional methods on standard classes

Differences to Java:

Groovy Intro

Important Projects:

Grails for Web Applications

Griffon for Swing Applications

Gradle for Buildsystems

Gparalizer for Grid Computing

Groovy Intro

● Class stores an CallSite[]
● Callsite becomes invalid on meta class

operations
● meta class might be changed from a different

thread
● Execution method might be precreated, use

reflection or runtime generated

Groovy 1.6 Callsite Caching:

MetaClassCallsite

Groovy Intro

Callsite caching

fib(n) select method

create callable

Invoke

cache

Created at RuntimeCreated at Runtime

Groovy Intro

Multi threaded changes to
meta classes require a
volatile or synchronized
checke at the call site

Problem:

Loops

Loops are often optimized by loop unrolling

int x = 0;
for(int i=0; i<3; i++) x++;

x=3;
int x = 0;
x++;
x++;
x++;

Loops

My Example:

 int c = Integer.parseInt(args[0]);
 int x = 0;
 while (x<c) x++;

This loop can be removed at runtime!

Loops

Proof:

6 7 8 9
0.040

0.050

0.060

0.070

0.080

0.090

0.100

java_x

number of loops in 10 x̂

tim
e

Loops

Situation in Groovy:

6 7 8 9
0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

groovy_x

number of loops in 10 x̂

tim
e

Loops

● Loop unrolling might be possible
● Removing the code is not
● This makes code blocks larger than needed
● Does allow less optimizations

Loops

java_V

 private volatile int t = 0;
 public void loop(int n) {
 int x = 0;
 while (x<n) {
 if (t==0) x++
 }
 }

6 7 8 9
0.000

0.500

1.000

1.500

2.000

2.500

java_x
groovy_o
java_V

number of loops (log)
tim

e

Loops

The usage of volataile
prevents the code being

optimized away

No solution to this!?

Fibonacci

java_int

 public int fib(int n) {
 if(n<2) return n;
 return fib(n-1) +
 fib(n-2);
 }

10 20 30 40
0.000

5.000

10.000

15.000

20.000

25.000

groovy_x
java_int

n
tim

e

Fibonacci

groovy_x

 def fib(n) {
 if(n<2) return n
 return fib(n-1) +
 fib(n-2)
 }

10 20 30 40
0.000

5.000

10.000

15.000

20.000

25.000

groovy_x
java_int

n
tim

e

Fibonacci

Is Groovy slow?

Are the programs equal?

No.

10 20 30 40
10

15

20

25

30

35

groovy slow
down

n
fa

ct
or

Fibonacci

To perform n<2 in Groovy we actually do:

n.compareTo(2)<0

• n is Integer
• compareTo will be called directly
• Still the bytecode version with primitives is faster

Fibonacci

To perform x+y in Groovy we actually call:

DGM#plus(int x,int y) {
return x+y;

}

• x and y exist as Integer on the stack
• to do x+y, we have to unbox x and y
• the result needs to be boxed again
• dynamic method call to this method
• x and y are stored in Object[]

Fibonacci

Even if the Java program is
changed to use Integer, the

performance is about the same.

Boxing does cost, but not as
much to explain the low speed

Fibonacci

Are method calls responsible?

Fibonacci

Java using
BigInteger

compared with
Groovy using

BigInteger

In the end only
57% slower

10 20 30 40
0

5

10

15

20

25

30

35

slow down

n

fa
ct

or

Fibonacci

● Hotspot needs much longer for Groovy

● Groovy has an addional startup penalty

● Method calls are about 50% slower

FPC

● "private" allows a
direct method call

● optional typing allows
usage of primitive
values

● meta programing still
possible

fast path compiler:

10 20 30 40
0%

50%

100%

150%

200%

250%

groovy slow
down

n
tim

e

FPC

groovy_o

def fib(n) {
 return fib_p(n)
}
private int fib_p(int x) {
 if (n<2) return n
 return fib_p(n-1) +
 fib_p(n-2)
}

by private enabled
direct method call

optional types

FPC

● more clean stack trace
● less bytecode generation at runtime
● less class loading problems
● lower initial costs compared to generating

Instrumentation based Hotspot

● Agent cannot attach itself ot its own VM
● Continously rewriting methods seems to cause

problems

This causes Problems if groovy is used:
● In a restricted environment
● As library

GSoc 2008
Chanwit Kaewkasi
http://code.google.com/p/gjit/

Runtime generated Callables

Replacing the method content with a
callable is not enough

● Stack trace will be even more problematic to
read (line number and file can be retained,
class name not)

● Requires runtime byte code generation with its
class loading and permgen problems (annok?)

● Tricking with sun.reflect package

Conclusion

● Microbenchmarks are EVIL!
● What do we need that speed for?
● If you are trying to be as fast as Java, you have

to fight smallest problems
● Possible good solutions for us, are not always

good for hotspot engineer minds

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32

