
0-0

ProjectFortress: Overview and Implementation Status

Christine H. Flood
Sun Labs, Oracle

0-1

Project Fortress Overview

Project Fortress is a programming language with the following tenets:

• Growable (small fixed core, rich libraries)

• Mathematical Notation

• Implicit Parallelism

• Strong Static Typing

1

Project Fortress Timeline

• Started in 2004 as part of the DARPA HPCS program

• Open source code base since January 2007

• Complete interpreter implementation of the Fortress 1.0 specification
as of April 2008 running on top of the JVM.

• Since then we’ve been working on a compiler which generates Java
Bytecodes.

1-1

Motivating Example: BirdCount

(Broad Institute Perl Code for Identifying Chicken Mutations)
• Perl Code

• Sequential

• 776 lines

• Fortress Code
• Parallel

• 177 lines

This is our first big compiler challenge.

1-2

Motivating Example from BirdCount

• This is a small simple piece of the birdcount code used as an illustrative
example.
• DNA is represented in two ways:

• The Reference Chicken DNA is fully mapped in ATCG format. The
letters ATCG each stand for a different molecule called a base:

• Adenine (A)
• Thymine (T)
• Cytosine (C)
• Guanine (G)

• The DNA samples from the sample chickens are produced in color
format. Machines use chemical reactions to produce colors which
represent pairs of molecules.

1-3

Transition to Color Space

A C G T
A 0 1 2 3
C 1 0 3 2
G 2 3 0 1
T 3 2 1 0

A A G C T C G A C T
0 2 3 2 2 3 2 1 2

1-4

How would we write this in Java?

• Sequential Iteration: Walk the list converting each character and its
neighbor into color format.
• Parallel with 8 threads:

• Partition the string into 8 chunks.

• Over Partition the string into 32 chunks.

• Recursive subdivision of the string with dynamic load balancing
(JSR166y).

1-5

How would we write this in Fortress?

• ‖
p←Pairs(input)

(
convert(p)

)
• p← Pairs(input) is a parallel generator.

• ‖ is concatenate, a parallel reducer.

1-6

Project Fortress Compiler Status Outline

• Implementation Status
Parser Done, shared with interpreter.
Type Checker In Progress
Native Interface In Progress
Code Generation In Progress
Byte Code Optimization In Progress
Runtime In Progress

• This talk will focus on the items in blue (Native Interface, Code
Generation, ByteCode Optimization and Runtime).

1-7

Fortress Compilation Process

Fortress
Source
Code

Fortress
ASTs

Native
Methods

Fortress
Class
files

Fortress
Execution

Dynamically
Generated
Classes

Optimized
Class
Files

Fortress
RunTime

1-8

Native Interface

• Our first compiler target was Hello World

• We needed a way to access System.out.println from Fortress code in
a way that the typechecker would understand.

1-9

Native Interface

• Fortress side
component Compiled0

import java com.sun.fortress.nativeHelpers.{simplePrintln.nativePrintln ⇒ jPrintln}
export Executable

run(): () = jPrintln(“Hello, World!”)

end

• Java side

package com.sun.fortress.nativeHelpers
public class simplePrintln {

public static void nativePrintln(String s) {
System.out.println(s);

}
public static void nativePrintln(int i) {

System.out.println(String.valueOf(i));
}

}

1-10

Native Interface: Transformer

• Generated Code injected into class simplePrintln

...
public static FVoid nativePrintln(FString s) {

simplePrintln.nativePrintln(s.getValue());
return FVoid.make();

}
...

• This injection works great as long as we aren’t modifying classes on
the bootclasspath. Then we are required to generate sibling classes
for wrapping/unwrapping.

• We hope to get back this performance cost by aggressive inlining with
the BytecodeOptimizer.

1-11

Traits, Objects, and Functional Methods

trait List comprises {Cons, Empty}
cons(x: Object) = Cons(x, self)

end

object Cons(first : Object, rest : List)
extends List

end

object Empty extends List
end

trait BigNum extends Number
. . .

end

opr −(Number, BigNum) :BigNum

1-12

Traits, Objects, and Functional Methods

• Traits are rewritten into interfaces. (multiple inheritance)

• Objects are rewritten into classes.

• Fields are largely eliminated by getter and setter methods.

• Functional methods are translated into top level function definitions
that trampoline into corresponding dotted method definitions.

1-13

Method Dispatch

• Java uses single dispatch, based on the runtime type of the method’s
owner.

• Fortress uses symmetric multiple dispatch based on the runtime type
of the method’s owner and the runtime types of the arguments.

• How do we implement our method dispatch on top of Java’s?

1-14

Overloading
which(x: Object, y: Object): String = “neither” (* 1 *)

which(x: Object, y: String): String = “second” (* 2 *)

which(x: String, y: Object): String = “first” (* 3 *)

which(x: String, y: String): String = “both” (* 4 *)

Generates:

which1entry(x: Object, : Object): String =

which1dispatch
`
x, x.ilk(), y, y.ilk()

´
which1dispatch(x: Object, T1: Type, y: Object, T2: Type): String =

if which4applicable(T1, T2) then which4dispatch(x, T1, y, T2)

elif which2applicable(T1, T2) then which2dispatch(x, T1, y, T2)

elif which3applicable(T1, T2) then which3dispatch(x, T1, y, T2)

else which$1(x, y)

end

Or after inlining:

public static which(CompilerBuiltin$Object x , CompilerBuiltin$Object y) {
if (x instanceof String) then

if (y instanceof String) then
which((String) x, (String) y)

...

1-15

Parametric Polymorphism

Potentially infinite possible instantiations (We can’t do the above template
expansion at compile time), so we use a lookup table.

private static BAlongTree sampleLookupTable = new BAlongTree();
pulic Object sampleLookup(long hashcode, String signature) {

Object o = sampleLookupTable.get(hashcode);
if (o == null)

o = InstantiatingClassloader.findGenericMethodClosure(hashcode,
sampleLookupTable
"template_class_name"
signature);

return o;
}

1-16

Run Time type checking

• The object we get back from the lookup must be assignable to the
appropriate ArrowType.

• Integer extends Number which extends Object however F(Object)
extends F(Number) which extends F(Integer). There is no good way
to graft this upside down hierarchy onto Java’s type system, so we do
the checks ourselves.

1-17

Parallelism Example: Fib

export Executable

fib(n: Z32): Z32 =
if n ≤ 2 then 1 else fib(n− 1) + fib(n− 2)
end

run(): () = println(fib 20)

end

1-18

Implicit Parallelism in Fib

N
result
compute()

Task Main()
Compute()
Fib() {
...
ForkIfProfitable()
...
}
run()

Fib

1-19

Fork If Profitable

• Parallelism Analyzer
• Does it contain a function call?

• Does it contain a loop?

• Does it contain a sufficient number of bytecodes?

• Runtime System
• How Busy is the machine?

1-20

Work Stealing

Thread 1 Thread 2 Thread 3 Thread 4

1#10241#10241#10241#10241#10241#1024

1#1024

1#128

513#512

129#128

1#256

1#512

257#256 513#256 769#256

641#128385#128 513#128 769#128257#128 897#128

1-21

ByteCode Optimization

• Why not just generate better byte codes to begin with?

• Using Bytecodes as our intermediate representation.
• What optimizations can we do that the JVM can’t?

• Inlining across classes

• Unboxing of Fortress types (raw integer performance)

• Linking

1-22

Bytecode Optimization Substitutions

If we see:

invokestatic "FFloatLiteral" "make" "(D)LFFloatLiteral;"
invokestatic "CompilerBuiltin" "coerce_RR64" "(LCompilerBuiltin$FloatLiteral;)LRR64;"

We know we can replace it with:

invokestatic "RR64" "make" "(D)LRR64;"

1-23

Bytecode Optimization

• Abstract Interpretation gives us the static types of stacks and locals

• We can incorporate knowledge about Fortress types

• foo(): Z32 = 7 + 5
• would generate code to create two intliterals, convert them to ZZ32s,

and use Fortress methods to add them.

• The bytecode optimizer knows that ZZ32 can never be extended and
that add can never be overridden, so we

• can replace the generated code with a call to make ZZ32(7 + 5)

• assuming that none of the intliterals overflow 32 bits.

1-24

Tools we Use

• ASM
• Generate bytecodes during compilation

• Insert marshalling and unmarshalling for Fortress Types into Java
Classes

• Modify bytecodes during optimization

• Generate new classes during runtime for generics.

• Scala for typechecking

• JSR166y for work stealing

• Rats! for packrat parsing

• Ant for building

1-25

Wishlist

• Tail Call Optimization (We heard it was coming, but we want it now.)

• Interface Injection (We need this for simplifying our generics)

• Closures (What (I think) you really want for work stealing)
• It sure would be nice to have better tools for folks that generate

bytecodes.
• Debugger that single stepped bytecodes.

• Pretty viewer of bytecodes.

1-26

