The Thorn Programming
Language: Robust
Concurrent Scripting

IBM Research Purdue Stockholm University Texas, Arlington Cambridge

Bard Bloom Brian Burg Johan Ostlund Nate Nystrom Rok StrniSa
Jakob Dam Peter Maj Tobias Wrigstad
John Field Gregor Richards
Jan Vitek

© IBM 2010 Java Languages Summit 2010

Do these apps have anything
iIn common?

cloud-based web 2.0

embedded network
real-time data analysis 2

Yes

Collection of distributed, concurrent
components

Components are loosely coupled by

messages, persistent data

Irregular concurrency, driven by real-
world data (“reactive”)

High data volumes
Fault-tolerance important

Example: Twitter

page
handler

page

web

gateway page

handler

page
handler

search
indexer

handler

memcache
partition

memcache
partition

memcache

partition

tweet user acct
backup DB DB

mobile
gateway

mobile
gateway

advertising
feed

* each solid box
IS a logical
process /
event handler

 each dashed
line is a
message

Thorn goals

An open source, agile, high performance
language for concurrent/distributed applications
and reactive systems

Key research directions

— Code evolution: language, runtime, tool support for
transition from prototype scripts to robust apps

— Efficient compilation: for a dynamic language on a JVM

— Cloud-level optimizations: high-level optimizations in a
distributed environment

— Security: end-to-end security in a distributed setting

— Fault-tolerance: provide features that help
ﬁro rammers write robust code in the presence of
ardware/software faults

Features, present and absent

Features Non-features

iIsolated, concurrent, . .
communicating processes changing fields/methods of

lightweight objects objects on the fly
first-class functions introspection/reflection
explicit state... serialization of mutable
...but many functional objects/references or
features unknown classes

gg}[/;?;;];)uelsaggregate dynamic code loading

expressive pattern matching
dynamic typing
lightweight module system

JVM implementation and
Java interoperability

gradual typing system
(experimental)

Status

Open source: http:\\www.thorn-lang.org
Interpreter for full language

JVM compiler for language core
— no sophisticated optimizations

— performance comparable to Python
— currently being re-engineered

Initial experience
— web apps, concurrent kernels, compiler, ...

Prototype of (optional) type annotation
system

Simple Thorn script

access command-line args
file i/o methods

split string into list

for (1 <- argv() (0).file () .contents () .split ("\n"))

)
if (l.contains?(argv() (1))) println(l);

iterate over elements of a list

no explicit decl needed for var

usual library functions on lists

8

More complex example: a
MMORPG*

Adverbial ping-pong
Two players

Play by describing how you hit the ball
Distributed

Each player runs exactly the same code

‘minimalist multiplayer online role-playing game

10

MMORPG
DEMO

MMORPG message flow

bouncing it off her head

spawn an isolated '

component (process) m

L r—— Bt
mutable immutable

component- component-
// MMOXPG code for both playe: SCOped variable scoped variable

spawn { start =
convert URl into| thisSite().str < otherSite.str;

var done := false;
component ref

if (start) play('"serve");

function 4 receive messages
°{ matching pattern

msg:string => {
fun play(hit) { println(msg);
advly = readln("Hit how?"); play("return"\:
?:n?d;;e?d\{fly = : send 3 message | I}m]_]_ - pa.’ctﬁrn variable
println("You lose!"); (any immutable println("Ycu E)VC\)/IF:StPéllFI)I’i)
otherSite <<< null; ‘jatun1) done := true,
} }

else { } constant pattern
otherSite <<< } until (done);

"$Sname $ hit s the ball Sadvly."; }

body {

[name, otherURI argv();

A —
V=
otherSite = site(ctherURI); decl receive {

N

) i interpolate data

into string

Thorn design philosophy

Steal good ideas from everywhere

— (ok, we invented some too)

— aiming for harmonious merge of features

— (s)’g[%oenr §st influences: Erlang, Python (but there are many

Assume concurrency is ubiquitous
— this affects every aspect of the language design

Adopt best ideas from scripting world...
— dynamic typing, powerful aggregates, ...

...but seduce programmers to good software engineering
— powerful constructs that provide immediate value

— optional features for robustness

— encourage use of functional features when appropriate

— no reflective or self-modifying constructs

Syntax follows semantics .
— more consequential ops have heavier syntax

Scripting + concurrency:
?...0r..|

Scripts already handle concurrency (but not especially
well)

Dynamic typing allows code for distributed components to
evolve independently...code can bend without breaking

Rich collection of built-in datatypes allows components
with minimal advance knowledge of one another’s
information schemas to communicate readily

Powerful aggregate datatypes extremely handy for
managing component state

— associative datatypes allow distinct components to
maintain differing “views” of same logical data

Thorn app: birdseye view

components are Thorn
processes

components can spawn other
components (at the same site)

processes communicate by

intra- and inter-site messaging
works the same way

sites model physical
application distribution
one JVM per site %
I/O and other resources

managed by sites component 8

failures managed by sites .‘

Anatomy of a component

 defines the component’s

message
codd lgndstaen state queueg

. loa8E¢ ARG Witisfizdd Wer" more (bag)
corﬁﬂgﬂgﬂpﬁ% wned

« each component has a
single thread of control

e components are isolated

— no shared state

* statementeraered Vi propagate
COMPORRAGES AR ENtS
(usuallg a loop)
Lorpnessage gafssed l%)é value
« component’execution en
whew buayrerdsrefs are only
TOTTT Of Telote reiererce
. body
messages managed via a
simple “mailbox” queue message

no locks (in user code) 17

(selectively) import

definitions from other /'1 Od u IeS

modules

modules are re_usable
bundles of definitions

— of codfind immutable
- fuggligdsvariable

* Classes

— of state
* mutable

- iniRiliabee mutable
modulesSAEMANEBIE other

modules

modules loaded (only)
whettefimelclassg whighponent
s spaayraedess values of

set Breyious defindiens)y any
componentaefned
statically

B il

module webhtml;
import webschemas.htmllstrict;

enforce validity = true;
var xhtmlchecker := null;

class Element (
var content:list, attr, type) {

def str() =

'".join(%[c.str | for c <- content]);

}

fun head(args, content) =
Element (args, content,
| head(content) =
Element({: :}, content,

nheadn) :

"head") ;

classes are
= f
Thorn data taxonciny | &reee
I types (per se)

e e
-

i string = ordered

— int

g Cchar

= component ref

More robust scripting

No reflection, eval, dynamic code loading
— alternatives for most scenarios
Ubiquitous patterns

— for documentation

— to generate efficient code

Powerful aggregates

— allow semantics-aware optimizations
Easy upgrade path from simple scripts to reusable code
— simple records — encapsulated classes
Channel-style concurrency

— to document protocols

Modules

— easy to wrap scripts, hide names
Experimental gradual typing system

PN - _
ThOrn p declare and bind “l found it, and

match value of k
variable y it's y!”

alist = [[1, true], [1l5, null], ["yes", "no"]];

fun lookup(k, [[$(k), V], _ 1) = +v;
| lookup(k, []) = null;

lookup(k, , t... = lookup(k, t):
| pli, I i) B ’ “| didn’t find it”

match arb. tail

if (lookup(1l5, alist) ~ +w) // found it

idiom for “did you
Patterns are everywhere find something
(call it w)?”

fun f(Patl ... Patn)

Pat = EXxp

match(Exp) {Patl ... Patn}
receive {Patl ... Patn}

random number list method (nullary,
in 1to nSides hence may omit parens)

lIsts, queries

fun roll(nDice, nSides) =
%[nSides.randl | for i <- 1 .. nDice].sum;

e 3[Z | for i <- E]
— list of the values of Z varying i
— this one makes a list of random numbers

key values var = conveniently

2 ~ 4 update one field “in
Records and tables e
chirps = table(num){chirp; var plus, minus};

chirps(n) := {: chirp:c, plus:p, minus:m :}

update row with key
n (other ops check if
row already exists)

Tables are high power maps/dictionaries

Each row of a table is a record
Can add/delete rows

Adding a new column is easy; no need for objects or parallel
tables

Variants: ordered (extensible arrays), map-style
Wide selection of queries

Records to objects

Prototype with records
r = {: a:1, b:2 :}
Upgrade later to classes
class Abc(a,b) { def aplusb() = a + b; };

r = Abc(1l, 2);

And things still work
— access via selectors
r.b ==
— access via pattern matching
if (r ~ {: a :}) println(a);
Plus, you get method calls
r.aplusb() ==

Channel-style
communication

component

synchronous
communication

sync chirp! (text, user) {
// sender blocks awaiting reply

J asynchronous

communication
async stopRightNow ()

// sender expects no reply

}

body runs immediately
after component is
spawned

body 1
while (true) serve;

}
process one message

Channels are sugar on basic messaging primitives

25

Compiling Thorn to the JVM

Message dispatch

— compiler generates a Java Interface per method
signature (name/arity)

—a Thorn class is compiled to a Java class that
implements as many interfaces as it has methods

— dispatch compiles to a cast operation following by
an interface dispatch

— number of interfaces can be reduced by grouping
methods together in batches

Compiling Thorn to the JVM

Fields

— every Thorn field access is compiled to a Java
method call

— all fields are compiled to private fields in Java

— all inherited fields are re-declared in each
generated Java class

— setter methods for val fields throw exceptions

Optimizing Thorn

fun a(1i, j) =
1.0 / (((1i + 3J) * (i + 3+ 1) > 1) + 1+ 1);

» 87 bytecode instructions, 8 new frames, 8 new
objects

fun a(i r]) =
1.0 / (((1i + 3) * (L +3F +1) > 1) +1i + 1);

« 29 bytecode instructions, 0 new frames, 1 new
object (because of untyped return)

Performance

30 457 '
B Typed Thorn B Python 2.5.1
2.5 “|Dynamic Thorn M Ruby 1.86 .

runming speed relstive 1o Python 2.5.1

1000 1500 ' 1000 1500 ' I 12
spoctral-norm masdelbeot fannkuch

A bigger app: WebCheeper 4

component
instantiated
___. dynamically per
' HTTP request

handler

page
handler
HTTP

gateway memcache

page
handler

page
handler

chirp
indexer

» each solid box is an isolated Thorn component
* each dashed box is a Thorn site

WebCheeper
DEMO

WebCheeper deployed on
AppScale cloud

handler
gateway

memcache
here, thorn

components are
= | replicated and
AppScale [7 | . deployed on
request ESIS -2 - i additional sites for
dispatcher I . . increased
% . indexer i gcalability
inter-component and
inter-site optimizations
may be more
consequential than

than intra-component
optimizations

Thorn: research testbed

In progress Planned
« optimizing compiler « lighter-weight Java
« cloud-level optimizations Integration

— code, data placement refactored, componentized
libraries

much more work on optional

— serialization
— message piggybacking types

component-level security o
. . — e.d., generalization of
— information flow patterns

| ECCESS control failure recovery for
join-style patterns for components

synchronization static checkers
database integration

More information

* http://www.thorn-lang.org
— download interpreter
— links to papers
— online demo
« Additional collaborators welcome!

 Workshop (NB: moved to Wed, 11:30)
— larger code examples

— maore on
* concurrency
» tables/queries
» classes
» optional types
« Java interop
« JSON/HTTP handling

— some lessons learned
— discussion: role of languages in distributed/cloud apps

Questions?

