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Do these apps have anything
iIn common?

cloud-based web 2.0

embedded network
real-time data analysis 2




Yes

Collection of distributed, concurrent
components

Components are loosely coupled by

messages, persistent data

Irregular concurrency, driven by real-
world data (“reactive”)

High data volumes
Fault-tolerance important




Example: Twitter
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Thorn goals

An open source, agile, high performance
language for concurrent/distributed applications
and reactive systems

Key research directions

— Code evolution: language, runtime, tool support for
transition from prototype scripts to robust apps

— Efficient compilation: for a dynamic language on a JVM

— Cloud-level optimizations: high-level optimizations in a
distributed environment

— Security: end-to-end security in a distributed setting

— Fault-tolerance: provide features that help
ﬁro rammers write robust code in the presence of
ardware/software faults




Features, present and absent

Features Non-features

iIsolated, concurrent, . .
communicating processes changing fields/methods of

lightweight objects objects on the fly
first-class functions introspection/reflection
explicit state... serialization of mutable
...but many functional objects/references or
features unknown classes

gg}[/;?;;];)uelsaggregate dynamic code loading

expressive pattern matching
dynamic typing
lightweight module system

JVM implementation and
Java interoperability

gradual typing system
(experimental)




Status

Open source: http:\\www.thorn-lang.org
Interpreter for full language

JVM compiler for language core
— no sophisticated optimizations

— performance comparable to Python
— currently being re-engineered

Initial experience
— web apps, concurrent kernels, compiler, ...

Prototype of (optional) type annotation
system




Simple Thorn script

access command-line args
file i/o methods

split string into list

for (1 <- argv() (0).file () .contents () .split ("\n"))

)
if (l.contains?(argv() (1))) println(l);

iterate over elements of a list

no explicit decl needed for var

usual library functions on lists
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More complex example: a
MMORPG*

Adverbial ping-pong
Two players

Play by describing how you hit the ball
Distributed

Each player runs exactly the same code

‘minimalist multiplayer online role-playing game
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MMORPG
DEMO




MMORPG message flow

bouncing it off her head




spawn an isolated '

component (process) m

L r—— Bt
mutable immutable

component- component-
// MMOXPG code for both playe: SCOped variable scoped variable

spawn { start =
convert URl into| thisSite().str < otherSite.str;

var done := false;
component ref

if (start) play('"serve");

function 4 receive messages
°{ matching pattern

msg:string => {
fun play(hit) { println(msg);
advly = readln("Hit how?"); play("return"\:
?:n?d;;e?d\{fly = : send 3 message | I}m]_]_ - pa.’ctﬁrn variable
println("You lose!"); (any immutable println("Ycu E)VC\)/IF:StPéllFI)I’i)
otherSite <<< null; ‘jatun1) done := true,
} }

else { } constant pattern
otherSite <<< } until (done);

"$Sname $ hit s the ball Sadvly."; }

body {

[name, otherURI argv();

A —
V=
otherSite = site(ctherURI); decl receive {

N

) i interpolate data

into string




Thorn design philosophy

Steal good ideas from everywhere

— (ok, we invented some too)

— aiming for harmonious merge of features

— (s)’g[%oenr §st influences: Erlang, Python (but there are many

Assume concurrency is ubiquitous
— this affects every aspect of the language design

Adopt best ideas from scripting world...
— dynamic typing, powerful aggregates, ...

...but seduce programmers to good software engineering
— powerful constructs that provide immediate value

— optional features for robustness

— encourage use of functional features when appropriate

— no reflective or self-modifying constructs

Syntax follows semantics .
— more consequential ops have heavier syntax




Scripting + concurrency:
?...0r..|

Scripts already handle concurrency (but not especially
well)

Dynamic typing allows code for distributed components to
evolve independently...code can bend without breaking

Rich collection of built-in datatypes allows components
with minimal advance knowledge of one another’s
information schemas to communicate readily

Powerful aggregate datatypes extremely handy for
managing component state

— associative datatypes allow distinct components to
maintain differing “views” of same logical data




Thorn app: birdseye view

components are Thorn
processes

components can spawn other
components (at the same site)

processes communicate by

intra- and inter-site messaging
works the same way

sites model physical
application distribution
one JVM per site %
I/O and other resources

managed by sites component 8

failures managed by sites .‘




Anatomy of a component

 defines the component’s

message
codd lgndstaen state queueg

. loa8E¢ ARG Witisfizdd Wer" more (bag)
corﬁﬂgﬂgﬂpﬁ% wned

« each component has a
single thread of control

e components are isolated

— no shared state

* statementeraered Vi propagate
COMPORRAGES AR ENtS
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Lorpnessage gafssed l%)é value
« component’execution en
whew buayrerdsrefs are only
TOTTT Of Telote reiererce
. body
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no locks (in user code) 17




(selectively) import

definitions from other /'1 Od u IeS

modules

modules are re_usable
bundles of definitions

— of codfind immutable
- fuggligdsvariable

* Classes

— of state
* mutable

- iniRiliabee mutable
modulesSAEMANEBIE other

modules

modules loaded (only)
whettefimelclassg whighponent
s spaayraedess values of

set Breyious defindiens)y any
componentaefned
statically

B il

module webhtml;
import webschemas.htmllstrict;

enforce validity = true;
var xhtmlchecker := null;

class Element (
var content:list, attr, type) {

def str() =

'".join(%[ c.str | for c <- content ]);

}

fun head(args, content) =
Element (args, content,
| head(content) =
Element({: :}, content,

nheadn ) :

"head" ) ;




classes are
= f
Thorn data taxonciny | &reee
I types (per se)

e e
-

i string = ordered

— int

g Cchar

= component ref




More robust scripting

No reflection, eval, dynamic code loading
— alternatives for most scenarios
Ubiquitous patterns

— for documentation

— to generate efficient code

Powerful aggregates

— allow semantics-aware optimizations
Easy upgrade path from simple scripts to reusable code
— simple records — encapsulated classes
Channel-style concurrency

— to document protocols

Modules

— easy to wrap scripts, hide names
Experimental gradual typing system




PN - _
ThOrn p declare and bind “l found it, and

match value of k
variable y it's y!”

alist = [ [1, true], [1l5, null], ["yes", "no"] ];

fun lookup(k, [ [$(k), V], _ 1) = +v;
| lookup(k, []) = null;

lookup(k, , t... = lookup(k, t):
| pli, I i) B ’ “| didn’t find it”

match arb. tail

if ( lookup(1l5, alist) ~ +w ) // found it

idiom for “did you
Patterns are everywhere find something
(call it w)?”

fun f(Patl ... Patn)

Pat = EXxp

match(Exp) {Patl ... Patn}
receive {Patl ... Patn}




random number list method (nullary,
in 1to nSides hence may omit parens)

lIsts, queries

fun roll(nDice, nSides) =
%[ nSides.randl | for i <- 1 .. nDice ].sum;

e 3[ Z | for i <- E ]
— list of the values of Z varying i
— this one makes a list of random numbers




key values var = conveniently

2 ~ 4 update one field “in
Records and tables e
chirps = table(num){chirp; var plus, minus};

chirps(n) := {: chirp:c, plus:p, minus:m :}

update row with key
n (other ops check if
row already exists)

Tables are high power maps/dictionaries

Each row of a table is a record
Can add/delete rows

Adding a new column is easy; no need for objects or parallel
tables

Variants: ordered (extensible arrays), map-style
Wide selection of queries




Records to objects

Prototype with records
r = {: a:1, b:2 :}
Upgrade later to classes
class Abc(a,b) { def aplusb() = a + b; };

r = Abc(1l, 2);

And things still work
— access via selectors
r.b ==
— access via pattern matching
if (r ~ {: a :}) println(a);
Plus, you get method calls
r.aplusb() ==




Channel-style
communication

component

synchronous
communication

sync chirp! (text, user) {
// sender blocks awaiting reply

J asynchronous

communication
async stopRightNow ()

// sender expects no reply

}

body runs immediately
after component is
spawned

body 1
while (true) serve;

}
process one message

Channels are sugar on basic messaging primitives

25




Compiling Thorn to the JVM

Message dispatch

— compiler generates a Java Interface per method
signature (name/arity)

—a Thorn class is compiled to a Java class that
implements as many interfaces as it has methods

— dispatch compiles to a cast operation following by
an interface dispatch

— number of interfaces can be reduced by grouping
methods together in batches




Compiling Thorn to the JVM

Fields

— every Thorn field access is compiled to a Java
method call

— all fields are compiled to private fields in Java

— all inherited fields are re-declared in each
generated Java class

— setter methods for val fields throw exceptions




Optimizing Thorn

fun a(1i, j) =
1.0 / (((1i + 3J) * (i + 3+ 1) > 1) + 1+ 1);

» 87 bytecode instructions, 8 new frames, 8 new
objects

fun a(i r ] ) =
1.0 / (((1i + 3) * (L +3F +1) > 1) +1i + 1);

« 29 bytecode instructions, 0 new frames, 1 new
object (because of untyped return)




Performance

30 457 '
B Typed Thorn B Python 2.5.1
2.5 “|Dynamic Thorn M Ruby 1.86 .

runming speed relstive 1o Python 2.5.1

1000 1500 ' 1000 1500 ' I 12
spoctral-norm masdelbeot fannkuch




A bigger app: WebCheeper 4
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» each solid box is an isolated Thorn component
* each dashed box is a Thorn site




WebCheeper
DEMO




WebCheeper deployed on
AppScale cloud

handler
gateway

memcache
here, thorn

components are
= | replicated and
AppScale [ 7 | . deployed on
request  ESIS -2 - i additional sites for
dispatcher I . . increased
% . indexer i  gcalability
inter-component and
inter-site optimizations
may be more
consequential than

than intra-component
optimizations




Thorn: research testbed

In progress Planned
« optimizing compiler « lighter-weight Java
« cloud-level optimizations Integration

— code, data placement refactored, componentized
libraries

much more work on optional

— serialization
— message piggybacking types

component-level security o
. . — e.d., generalization of
— information flow patterns

| ECCESS control failure recovery for
join-style patterns for components

synchronization static checkers
database integration




More information

* http://www.thorn-lang.org
— download interpreter
— links to papers
— online demo
« Additional collaborators welcome!

 Workshop (NB: moved to Wed, 11:30)
— larger code examples

— maore on
* concurrency
» tables/queries
» classes
» optional types
« Java interop
« JSON/HTTP handling

— some lessons learned
— discussion: role of languages in distributed/cloud apps




Questions?




