
The Thorn Programming
Language: Robust

Concurrent Scripting

IBM Research

Bard Bloom

Jakob Dam
John Field

Purdue

Brian Burg

Peter Maj
Gregor Richards

Jan Vitek

Cambridge

Rok Strni!a

Texas, Arlington

Nate Nystrom

Stockholm University

Johan Östlund

Tobias Wrigstad

Java Languages Summit 2010 © IBM 2010

Do these apps have anything
in common?

2

cloud-based web 2.0

embedded network

real-time data analysis

Yes

•! Collection of distributed, concurrent
components

•! Components are loosely coupled by
messages, persistent data

•! Irregular concurrency, driven by real-
world data (“reactive”)

•! High data volumes

•! Fault-tolerance important
3

Example: Twitter

4

search
indexer

web
gateway

page
handler

page
handler

page
handler

page
handler

user acct
DB

tweet
backup DB

memcache
partition

memcache
partition

memcache
partition

mobile
gateway

mobile
gateway

advertising
feed

•! each solid box
is a logical
process /
event handler

•! each dashed
line is a
message

 Thorn goals

An open source, agile, high performance
language for concurrent/distributed applications

and reactive systems

Key research directions

–! Code evolution: language, runtime, tool support for
transition from prototype scripts to robust apps

–! Efficient compilation: for a dynamic language on a JVM

–! Cloud-level optimizations: high-level optimizations in a
distributed environment

–! Security: end-to-end security in a distributed setting

–! Fault-tolerance: provide features that help
programmers write robust code in the presence of
hardware/software faults

5

Features, present and absent

Features
•! isolated, concurrent,

communicating processes
•! lightweight objects
•! first-class functions
•! explicit state...
•! ...but many functional

features
•! powerful aggregate

datatypes
•! expressive pattern matching
•! dynamic typing
•! lightweight module system
•! JVM implementation and

Java interoperability
•! gradual typing system

(experimental)

Non-features

•! changing fields/methods of
objects on the fly

•! introspection/reflection

•! serialization of mutable
objects/references or
unknown classes

•! dynamic code loading

6

Status

•! Open source: http:\\www.thorn-lang.org
•! Interpreter for full language
•! JVM compiler for language core

–! no sophisticated optimizations
–! performance comparable to Python
–! currently being re-engineered

•! Initial experience
–!web apps, concurrent kernels, compiler, ...

•! Prototype of (optional) type annotation
system

7

Simple Thorn script

8

for (l <- argv()(0).file().contents().split("\n"))

 if (l.contains?(argv()(1))) println(l);

file i/o methods

no explicit decl needed for var

split string into list

iterate over elements of a list

access command-line args

usual library functions on lists

DEMO

grep

9

More complex example: a
MMORPG*

•! Adverbial ping-pong

•! Two players

•! Play by describing how you hit the ball

•! Distributed

•! Each player runs exactly the same code

*minimalist multiplayer online role-playing game
10

DEMO

MMORPG

11

MMORPG message flow

Player 1 Player 2

happily

eagerly

quickly

sluggishly

snickering

bouncing it off her head

12

MMORPG Code

13

// MMORPG code for both players!

spawn {!

 var done := false;!

 body { !
 [name, otherURI] = argv();!
 otherSite = site(otherURI);!

 fun play(hit) {!
 advly = readln("Hit how?");!
 done := advly == "";!
 if (done) {!
 println("You lose!");!
 otherSite <<< null;!
 }!
 else {!
 otherSite <<< !
 "$name $`hit`s the ball $advly.";!
 }!
 }!

 start =!
 thisSite().str < otherSite.str;!

 if (start) play("serve");!

 do {!
 receive {!
 msg:string => {!
 println(msg);!
 play("return");!
 }!
 | null => {!
 println("You win!");!
 done := true;!
 }!
 }!
 } until (done);!
 }!

};!

spawn an isolated
component (process)

mutable
component-
scoped variable

function
decl

send a message
(any immutable
datum)

convert URI into
component ref

receive messages
matching pattern

pattern variable
(with type
constraint)

interpolate data
into string

constant pattern

immutable
component-
scoped variable

Thorn design philosophy
•! Steal good ideas from everywhere

–! (ok, we invented some too)
–! aiming for harmonious merge of features
–! strongest influences: Erlang, Python (but there are many

others)

•! Assume concurrency is ubiquitous
–! this affects every aspect of the language design

•! Adopt best ideas from scripting world...
–! dynamic typing, powerful aggregates, ...

•! ...but seduce programmers to good software engineering
–! powerful constructs that provide immediate value
–! optional features for robustness
–! encourage use of functional features when appropriate
–! no reflective or self-modifying constructs

•! Syntax follows semantics
–! more consequential ops have heavier syntax

14

Scripting + concurrency:
? …or… !

•! Scripts already handle concurrency (but not especially
well)

•! Dynamic typing allows code for distributed components to
evolve independently…code can bend without breaking

•! Rich collection of built-in datatypes allows components
with minimal advance knowledge of one another’s
information schemas to communicate readily

•! Powerful aggregate datatypes extremely handy for
managing component state

–! associative datatypes allow distinct components to
maintain differing “views” of same logical data

15

Thorn app: birdseye view

16

Site A

component 1

component 2

component 3

component 4

Site B

component 5

component 6

component 7

component 8

•! sites model physical
application distribution

•! one JVM per site

•! I/O and other resources
managed by sites

•! failures managed by sites

•! components are Thorn
processes

•! components can spawn other
components (at the same site)

•! processes communicate by
message passing

•! intra- and inter-site messaging
works the same way

17

Anatomy of a component

component

module ... module

(optional channel definitions)

body

message
queue
(bag)

message

•! statement executed when
component is spawned
(usually a loop)

•! component execution ends
when body ends

•! defines the component’s
code and state

•! loaded and initialized when
component is spawned

•! all program state
encapsulated in one or more
components

•! each component has a
single thread of control

•! components are isolated

–! no shared state

–! exceptions do not propagate
across components

•! messages passed by value

•! component refs are only
form of remote reference

•! messages managed via a
simple “mailbox” queue

•! no locks (in user code)

module webhtml;!

import webschemas.html1strict;!

enforce_validity = true;!
var xhtmlchecker := null;!

class Element(!
 var content:list, attr, type) {!

 def str() =!
 "".join(%[c.str | for c <- content]);!
 ...!
}!

fun head(args, content) =!
 Element(args, content, "head");!
 | head(content) =!
 Element({: :}, content, "head");!

Modules

18

bind immutable
state variable

initialize mutable
state variable

define class (which
may access values of
previous definitions)

define function (here,
overloaded)

(selectively) import
definitions from other
modules

•! modules are reusable
bundles of definitions
–! of code

•! functions
•! classes

–! of state
•! mutable
•! immutable

•! modules may import other
modules

•! modules loaded (only)
when enclosing component
is spawned

•! set of modules used by any
component defined
statically

•! modules are initialized
once, on first import

Thorn data taxonomy
primitive object: data/

method bundle

user-defined
object

class-
defined

anonymous

class

javaly

function built-in

immutable
primitive

null

int

string

char

component ref

...

immutable
aggregate

list

record

mutable
aggregate

table

map

ordered

19

classes are
generators of
objects, not
types (per se)

More robust scripting

•! No reflection, eval, dynamic code loading
–! alternatives for most scenarios

•! Ubiquitous patterns
–! for documentation
–! to generate efficient code

•! Powerful aggregates
–! allow semantics-aware optimizations

•! Easy upgrade path from simple scripts to reusable code
–! simple records " encapsulated classes

•! Channel-style concurrency
–! to document protocols

•! Modules
–! easy to wrap scripts, hide names

•! Experimental gradual typing system

20

Thorn patterns

21

alist = [[1, true], [15, null], ["yes", "no"]];!

fun lookup(k, [[$(k), v], _...]) = +v;!

 | lookup(k, []) = null;!

 | lookup(k, [_, t...]) = lookup(k, t);!

if (lookup(15, alist) ~ +w) // found it!

match value of k! declare and bind
variable y!

match arb. tail

“I found it, and
it’s y!”

“I didn’t find it”

idiom for “did you
find something
(call it w)?”

Patterns are everywhere
•! fun f(Pat1 ... Patn)

•! Pat = Exp

•! match(Exp) {Pat1 ... Patn}

•! receive {Pat1 ... Patn}

Lists, queries

•! %[Z | for i <- E] !

–! list of the values of Z varying i

–! this one makes a list of random numbers

fun roll(nDice, nSides) = !

 %[nSides.rand1 | for i <- 1 .. nDice].sum;

22

random number
in 1 to nSides!

list method (nullary,
hence may omit parens)!

Records and tables

•! Tables are high power maps/dictionaries

•! Each row of a table is a record

•! Can add/delete rows

•! Adding a new column is easy; no need for objects or parallel
tables

•! Variants: ordered (extensible arrays), map-style

•! Wide selection of queries

chirps = table(num){chirp; var plus, minus};!

 ...!

chirps(n) := {: chirp:c, plus:p, minus:m :}!

23

key! values! var = conveniently
update one field “in
place”!

update row with key
n (other ops check if
row already exists)

Records to objects
•! Prototype with records

•! Upgrade later to classes

•! And things still work

–! access via selectors

–! access via pattern matching

•! Plus, you get method calls

r = {: a:1, b:2 :}!

class Abc(a,b) { def aplusb() = a + b; };!

 ...!

r = Abc(1, 2);!

r.b == 2!

if (r ~ {: a :}) println(a);!

r.aplusb() == 3! 24

Channel-style
communication

25

{

}

sync chirp!(text, user) {

 // sender blocks awaiting reply

}

async stopRightNow() {

 // sender expects no reply

}

...

body {

 while (true) serve;

}

 component

synchronous
communication

asynchronous
communication

body runs immediately
after component is
spawned

process one message

Channels are sugar on basic messaging primitives

Compiling Thorn to the JVM

Message dispatch
–!compiler generates a Java Interface per method

signature (name/arity)

–!a Thorn class is compiled to a Java class that
implements as many interfaces as it has methods

–!dispatch compiles to a cast operation following by
an interface dispatch

–!number of interfaces can be reduced by grouping
methods together in batches

26

Compiling Thorn to the JVM

Fields
–!every Thorn field access is compiled to a Java

method call

–!all fields are compiled to private fields in Java

–!all inherited fields are re-declared in each
generated Java class

–!setter methods for val fields throw exceptions

27

Optimizing Thorn

•! 87 bytecode instructions, 8 new frames, 8 new
objects

fun a(i, j) = "
 1.0 / (((i + j) * (i + j + 1) >> 1) + i + 1);

•! 29 bytecode instructions, 0 new frames, 1 new
object (because of untyped return)

fun a(i: int, j: int) ="
 1.0 / (((i + j) * (i + j + 1) >> 1) + i + 1);

28

Performance

29

A bigger app: WebCheeper

•! each solid box is an isolated Thorn component
•! each dashed box is a Thorn site

30

 HTTP
gateway memcache

 chirp
indexer

page
handler

page
handler

page
handler

page
handler

component
instantiated
dynamically per
HTTP request

 twitter
app API

DEMO

WebCheeper

31

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

WebCheeper deployed on
AppScale cloud

32

 HTTP
gateway

 twitter
app API

page
handler

 HTTP
gateway

 HTTP
gateway

page
handler

 AppScale
request

dispatcher

memcache
here, thorn
components are
replicated and
deployed on
additional sites for
increased
scalability

 chirp
indexer

inter-component and
inter-site optimizations
may be more
consequential than
than intra-component
optimizations

Thorn: research testbed

In progress
•! optimizing compiler
•! cloud-level optimizations

–! code, data placement
–! serialization

–! message piggybacking
•! component-level security

–! information flow

–! access control
•! join-style patterns for

synchronization
•! database integration

Planned
•! lighter-weight Java

integration

•! refactored, componentized
libraries

•! much more work on optional
types

–! e.g., generalization of
patterns

•! failure recovery for
components

•! static checkers

33

More information

•! http://www.thorn-lang.org
–! download interpreter
–! links to papers
–! online demo

•! Additional collaborators welcome!
•! Workshop (NB: moved to Wed, 11:30)

–! larger code examples
–! more on

•! concurrency
•! tables/queries
•! classes
•! optional types
•! Java interop
•! JSON/HTTP handling

–! some lessons learned
–! discussion: role of languages in distributed/cloud apps

34

Questions?

35

