
<Insert Picture Here>

Virtual Extension Methods
(or, wedging multiple inheritance into the JVM)

Brian Goetz
Java Language Architect, Oracle Corporation

The image part with

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

The image part with

New language features for Java SE 8

•  Lambda expressions (closures)
{ String x -> x.length() == 0 }

•  SAM conversion
Predicate<String> p = { String x -> x.length() == 0 }

•  More type inference, e.g. lambda formals
 Predicate<String> p = { x -> x.length() == 0 }

•  Method references
Predicate<> p = String->isEmpty

•  Exception transparency (maybe)
•  Virtual extension methods (aka defender methods)

The image part with

Why these features?

•  It’s about time!
•  Java is the lone holdout among mainstream OO languages

at this point

•  Provide libraries a path to multicore
•  Internal iteration needed to make data structures parallel-

friendly
•  Today, developer’s primary tool for computing over

aggregates is the (fundamentally serial) for loop

•  Empower library developers
•  Easier to evolve the programming model through libraries

than through language
•  Enable developers to evolve interface-based APIs over time

The image part with

Goals

•  Encourage the creation of more abstract, high-
performance libraries
•  Secondary goal: encourage a more side-effect-free

programming model

•  Simplify the consumption of such libraries through a
concise code-as-data mechanism

•  Provide for better library evolution and migration
•  Collections are looking long in the tooth
•  Lambdas without broad library support would be disappointing

•  Secondary goal: keep doors open
•  Function types (but requires reification)
•  Control abstraction (but lots of work needed to get there)

The image part with

Why extension methods?

•  Adding closures is a big language change
•  If Java had closures from day 1, our APIs would

definitely look different
•  So adding closures now makes our APIs show their age!
•  Most important APIs (Collections) are based on interfaces
•  Can’t add to interfaces without breaking source compatibility

•  Adding closures, but not upgrading the APIs to use
them effectively, would be silly
•  What do you mean, I can’t say collection.forEach(lambda)?

•  Therefore we need a mechanism for interface
evolution

The image part with

Static extension methods

•  C# has static extension methods
•  A static extension method is a tuple (T, n, D, m)

•  Calls to t.n(args) rewritten at compile time as D.m(t, args)
•  Advantages

•  Simple to implement
•  No VM changes

•  Limitations
•  Brittle – if default changes, clients have to be recompiled
•  No covariant overrides
•  Not reflectively discoverable
•  Poor interaction with existing instance methods of same name
•  Extended class cannot provide a “better” implementation
•  Not very object-oriented

The image part with

Solution: virtual extension methods

•  Virtual extension methods specified in the interface
interface Collection<T> {
 // existing methods, plus
 void forEach(Block<T> block)
 default Collections.<T>forEach;
}

•  The forEach method is an extension method
•  From caller’s perspective, an ordinary virtual method

•  Collection provides a default implementation
•  Default is only used when implementation classes do not

provide a body for the extension method
•  “If you cannot afford an implementation of forEach, one will

be provided for you at no charge.”

The image part with

Virtual extension methods

•  Within I, extension methods are a tuple (n, D, m)
•  Calls to i.m(args) are rewritten at run time to D.m(i, args)

•  Gack, is this multiple inheritance in Java?
•  Yes, but Java already has multiple inheritance of types
•  This adds multiple inheritance of behavior too

•  But not state!
•  Abstract classes still relevant for representation

•  Multiple inheritance still a source of complexity due to
separate compilation and dynamic linking

•  API evolution may be the primary motivator, but
useful as an inheritance mechanism in itself

The image part with

Method resolution

•  The rules treat inheritance of behavior from classes
and interfaces separately

•  Declarations in classes always win over interfaces
•  Follow the implementation hierarchy upwards
•  If you find a concrete body, OR a declaration that the

method is abstract, stop
•  Only then consider defaults provided by interfaces

•  Declarations in more-specific (under subtyping)
interfaces win over less-specific interfaces

•  Invocation is resolved to a default if there is a unique,
most-specific default-providing interface

The image part with

Method resolution
Pruning less specific interfaces

•  If interface B extends A, then B is more specific than A
•  If both A and B provide a default, we remove A from

consideration because B is more specific
interface Collection<T> {
 public Collection<T> filter(Predicate<T> p) default …;
}
interface Set<T> extends Collection<T> {
 public Set<T> filter(Predicate<T> p) default …;
}
class D<T> implements Set<T> { ... }
class C<T> extends D<T> implements Collection<T> { … }

•  Here, the fact that C<T> declares Collection<T> as an
immediate supertype is irrelevant
•  Set is more specific and also provides a default, so it wins over

Collection

The image part with

Method resolution
Handling diamonds

•  We track not the identity of the default, but the
interface that provides it
interface A { void m() default X.a; }
interface B extends A { }
interface C extends A { }
class D implements B, C { ... }

•  When analyzing D, it is A that is the provider of the
default, and it is unique
•  Therefore d.m(args) resolves to X.a(d, args)
•  Diamonds are a problem for state inheritance, not behavior

The image part with

But wait, there’s math

•  The type checking and method resolution rules are
specified by a formal model (excerpts here)

The image part with

Compatibility goals

•  The whole point of this feature is being able to
compatibly evolve APIs

•  Compatibility has multiple faces
•  Source compatibility
•  Binary compatibility

•  The key operation we care about is adding new
methods with defaults to existing interfaces
•  Also care about adding defaults to existing methods, and

changing defaults on existing extension methods
•  Removals of most kinds are unlikely to be compatible

The image part with

Compatibility goals

•  How to achieve source and binary compatibility for
addition of extension methods is not fully solved
•  Almost there – solved for programs that are globally consistent

(i.e., would compile if recompiled from scratch)
•  Damn that pesky separate compilation!

•  Currently several vectors through which an “innocent”
change to an interface can break code
•  Add an extension method whose signature matches that of

another method but whose return type is not compatible
•  This problem existed before, but went untriggered because

changes to interfaces in standalone libraries were rare
•  Add an extension method which is identical to an extension

method in another interface, and classes exist that implement
both interfaces

The image part with

Compatibility goals

•  The solutions to each of these problems involve
tradeoffs between complexity of method resolution,
and the set of incompatible changes
•  Three kinds of solutions

•  Storing additional as-compiled state in the classfile
•  Using properties of the call site (e.g., interface through

which invokeinterface is invoked)
•  Imposing a linearization order on candidate interfaces

that could be used to resolve incompatibilities
•  We care more about avoiding binary incompatibilities

than source incompatibilities
•  After-the-fact source incompatibilities can be mitigated by

module dependencies

The image part with

How to implement?

•  There are many possible implementation strategies
•  Compiler techniques

•  Compile-time injection of default bodies into classes
•  Brittle, contradicts dynamic linking imperative

•  Translate invocations of extension methods using
invokedynamic, and let bootstrap resolve default

•  Creates yet another way to invoke methods
•  Creates binary incompatibilities

•  VM techniques
•  Classload-time injection of default bodies into classes
•  Integrated with vtable building

•  Big question: is this a language or VM feature?
•  Reality: everything else about inheritance is a VM feature
•  Trying to implement otherwise would cause visible seams

The image part with

Bridge methods rear their ugly head

•  In Java 5, we added generics and covariant
overrides
•  These broke the 1:1 correspondence between methods in

Java source code and methods in classfiles
•  Compiler needs to generate “bridge methods” to make up

for differences between the language and VM type systems
•  This happens with both covariant overrides and with generic

type substitution

•  The compiler knows that the two signatures are the
same method, but the VM does not
•  Arguably this should have been a VM feature, but we took

the easy route and did it in the compiler

The image part with

Bridge methods

•  Example:
interface A<T> { void m(T t); }
interface B { void m(String s); }
class C implements A<String>, B {
 public void m(String s) { … }
}

•  Here, instances of C must respond to both signatures: m
(Ljava/lang/String;) and m(java/lang/Object;)
•  Compiler generates the Object version which redirects to the

String version
•  We need to be prepared to resolve defaults for both
•  Need to know at runtime these are really the same method!

•  “A simple matter of programming”
•  In the long run should probably push bridges into the VM

•  This problem also shows up with SAM conversion

The image part with

Consequences for non-Java languages

•  By making this a VM feature, non-Java languages
can remain mostly ignorant of extension methods
•  Can invoke extension methods through invokeinterface

without having to know that they are extension methods or
how they are resolved

•  Can generate classes that implements an interface, and if
new methods are added to the interface after compilation,
defaults still work

•  Can generate interfaces with default implementations and
use as a composition mechanism

•  Can package language-specific runtime functionality into
interfaces that Java classes can “mix in”

The image part with

Summary

•  Virtual extension methods are an upgrade to existing
interface inheritance, where classes can inherit
behavior from interfaces

•  Goal is to allow interfaces to be evolved without
breaking existing implementations
•  Though also presents new options for composing

functionality

•  Implementation is as a VM feature, reducing impact
on classfile consumers

