
Are We There Yet?

A deconstruction of object-oriented time

Rich Hickey

Provocation

! Are we being well served by the popular OO languages?

! Have we reached consensus that this is the best way to
build software?

! Is there any evidence that this is so?

! Is conventional OO a known good?

! or just so widely adopted we no longer have the ability
to see its attendant costs or limitations?

A Deeply
Entrenched Model

! Popular languages today are
more similar than they are
different

! Single-dispatch, stateful OO

! Classes, inheritance, fields,
methods, GC

! Smalltalk, Java, C#, Python,
Ruby, Scala...

Not so Different

! Differences are superficial

! MI/Mixins/Interfaces

! Static/Dynamic typing

! Semicolons/indentation/blocks

! Closures/Inner-classes

! Preferences have more to do with
programmer sensibilities and
expressivity than core principles

! Different cars, same road

Has OO “Won” ?

! Are we just going to tweak this model for the next few
decades?

! People seem to like it

! Success has bred increasing conservatism, and slowed the
pace of change

! The purpose of this talk is not to beat up on OO

! Just admit the possibility that not only are we not there, we
may be driving on the wrong road.

What are we
missing?

! Are we ready for an increasingly
complex, concurrent and
heterogeneous world, or will we
be facing some fundamental
impedance mismatch?

! What pressures should drive the
adoption of new (and often old)
ideas not yet in the mainstream?

Some Critical Ideas

! Incidental complexity

! Time/Process

! Functions/Value/Identity/State

! Action/Perception

“Seek simplicity, and distrust it.”

Alfred North Whitehead

Incidental complexity

! Not the complexity inherent in the problem

! Comes along as baggage in the way we formulate our solutions, our
tools or languages

! Worst when a side effect of making things appear simple

C++

! Foo *bar(...); //what’s the problem?

! Simple constructs for dynamic memory

! Simple? - same syntax for pointers to heap and non-heap things

! Complexity - knowing when/if to delete

! No standard automatic memory management

! Presents inherent challenge to C++ as a library language

! Implicit complexity we are no longer willing to bear

Java

! Date foo(...); //what’s the problem?

! Simple - only references to dynamic memory, plus GC

! Simple? - same syntax for references to mutable/immutable things

! Complexity - knowing when you will see a consistent value

! Not (just) a concurrency problem. Can we ‘remember’ this
value, is it stable? If aliased and mutated, who will be affected?

! No standard automatic time management

! For too many programmers, simplicity is measured superficially:

! Surface syntax

! Expressivity

! Meanwhile, we are suffering greatly from incidental complexity

! Can’t understand larger programs

! Can’t determine scope of effects of changes to our programs

! Concurrency is the last straw

Familiarity Hides Complexity

“Civilization advances by
extending the number of
important operations which we
can perform without thinking
about them.”
Alfred North Whitehead

Pure Functions are Worry-Free

! Take/return values

! Local scope

! No remote inputs or effects

! No notion of time

! Same arguments, same result

! Easy to understand, change,
test, compose

! Huge benefits to using pure
functions wherever possible

! In contrast:

! Objects + methods fail to
meet the “without thinking
about them” criteria

But - many interesting programs
aren’t functions

! E.g. - ‘google’ is not a function

! Our programs are increasingly
participants in the world

! Not idealized timeless
mathematical calculations

! Have observable behavior over time

! get inputs over time

! We are building processes

“That ‘all things flow’ is the first
vague generalization which the
unsystematized, barely analysed,
intuition of men has produced.”
Alfred North Whitehead

OO and “Change”

! Object systems are very simplistic models of the real world

! Most embody some notion of “behavior” associated with data

! Also, no notion of time

! Or, presume a single universal shared timeline

! When concurrency makes that not true, breaks badly

! Locking an attempt to restore single timeline

! No recipe for perception/memory - call clone()?

We have gotten this wrong!

! By creating objects that could
‘change’ in place

! ... objects we could 'see' change

! Left out time and left ourselves
without values

! Conflated symbolic reference
(identity) with actual entities

! Perception is fragile

“No man can cross the same river
twice.”

Heraclitus

Oops!

! Seemed to be able to change memory in place

! Seemed to be able to directly perceive change

! Thus failed to associate values with points in time

! New architectures forcing the distinctions more and more

! Caching

! Multiple versions of the value associated with an address

! Maintaining the illusion is getting harder and harder

A Simplified View
(apologies to A.N.W.)

! Actual entities are atomic immutable values

! The future is a function of the past, it doesn’t change it

! Process creates the future from the past

! We associate identities with a series of causally related values

! This is a (useful) psychological artifact

! Doesn’t mean there is an enduring, changing entity

! Time is atomic, epochal succession of process events

“There is a becoming of
continuity, but no continuity of
becoming”

Alfred North Whitehead

! Value

! An immutable magnitude,
quantity, number... or
immutable composite
thereof

! Identity

! A putative entity we
associate with a series of
causally related values
(states) over time

! State

! Value of an identity at a
moment in time

! Time

! Relative before/after
ordering of causal values

Terms (for this talk)

! Our programs need to make decisions

! Making decisions means operating on stable values

! Stable values need to be:

! Perceived

! Remembered

! We need identity to model things similarly to the way we think about
them

! while getting state and time right

Why should we care?

We don't make decisions about
things in the world by taking turns
rubbing our brains on them.

Nor do we get to stop the world
when we want to look around

Perception is massively parallel and
requires no coordination
This is not message passing!

Perception

! We are always perceiving the (unchanging!)
past

! Our sensory/neural system is oriented
around:

! Discretization

! Simultaneity detection

! Ignoring feedback, we like snapshots

Action, in a place, must be sequential
Action and perception are different!

v1

F

v2

F

v3

F

v4

Process events

(pure functions)

Observers/perception/memory

States

(immutable values)Identity

(succession of states)

Epochal Time Model

Implementation ideas

! We need language constructs
that will let us efficiently:

! Represent values. Create and
share.

! Manage value succession/
causation/obtention

! We need coordination constructs
to moderate value succession

! Can also serve as identities

! We can (must?) consume
memory to model time!

! Old value -> pure function ->
new value

! Values can be used as
perceptions/memories

! GC will clean up the no-
longer-referenced ‘past’

Persistent data structures

! Immutable

! Ideal for states, snapshots
and memories

! Stable values for decision
making and calculation

! Never need synchronization!

! ‘Next’ values share structure
with prior, minimizing copying

! Creation of next value never
disturbs prior, nor impedes
perceivers of prior

! Substantial reduction in
complexity:

! APersistentStructure foo();

! Alias freely, make modified
versions cheaply

! Rest easy, stay sane

Trees!

! Shallow, high branching factor

! Nodes use arrays

! Can implement vectors and
hash maps/sets etc

2 310 4

Structural Sharing

Past

Next

Declarativeness and Parallelism

! Performance gains in the future
will come from parallelism

! Parallel code needs to be
declarative - no loops!

! map/reduce etc

! Parallel code is easier when
functional

! else will get tied up by
coordination

! Tree-based persistent data
structures are a perfect fit

! Already set up for divide
and conquer and
composable construction

! IMO - These should be the
most common data structures
in use, yet almost unused
outside of FP

“It’s the performance, stupid!”

! Persistent data structures are
slower in sequential use
(especially ‘writing’)

! But - no one can see what
happens inside F

! I.e. the ‘birthing process’ of the
next value can use our old (and
new) performance tricks:

! Mutation and parallelism

! Parallel map on persistent
vector same speed as loop on
j.u.ArrayList on quad-core

! Safe ‘transient’ versions of PDS
possible, with O(1) conversions
between persistent/transient

vN

F

vN+1

the Audience

v1

F

v2

F

v3

F

v4

Process events

(pure functions)

Observers/perception/memory

States

(immutable values)Identity

(succession of states)

Epochal Time Model

Time constructs

! Need to ensure atomic state
succession

! Need to provide point-in-time
value perception

! Multiple timelines possible
(and desirable)

! Many implementation
strategies with different
characteristics/semantics

! CAS - uncoordinated 1:1

! Agents - uncoordinated,
async. (Like actors, but local
and observable)

! STM - coordinated, arbitrary
regions

! Maybe even ... locks?

! coordinated, fixed regions

F

v2

F

v3

F

v4

vN+1

vNs

vN

AtomicReference

CAS as Time Construct

! 1:1 timeline/identity

! Atomic state succession

! Point-in-time value perception

! swap(aRef, f, args)

! f(vN, args) becomes vN+1

! can automate spin

F

vN+1

vNs

vN

F FFFF

Agents as Time Construct

! send(aRef, f, args)

! returns immediately

! queue enforces serialization

! f(vN, args) becomes vN+1

! happens asynchronously in
thread pool thread

! 1:1 timeline/identity

! Atomic state succession

! Point-in-time value perception

STM

! Coordinates action in (arbitrary) regions involving multiple
identities/places

! Multiple timelines intersect in a transaction

! ACI properties of ACID

! Individual components still follow functional process model

! f(vN, args) becomes vN+1

STM as Time Construct

F

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

F

F

F

F

F

F

F F F

F

FTransactions

v2 v3

v2 v3

v2 v3

v2 v3

v2 v3

v2 v3

Perception in (MVCC) STM

Transactional

snapshots

Non-transactional

scans

Multiversion concurrency control

! No interference with processes

! Models light propagation,
sensory system delay

! By keeping some history

! Persistent data structures
make history cheap

! Allows observers/readers to
have timeline

! Composite snapshots are like
visual glimpses, from a
point-in-time in the
transaction universe

! Free reads are like visual
scans that span time

STMs differ

! Without MVCC you will either be:

! limited to scans

! back to “stop the world while I look at it”

! Granularity matters!

! STMs that require a transaction in order to see consistent values of
individual identities are not getting time right, IMO

Conclusions

! Excessive implicit complexity begs for (and sometimes begets) change

! The conflation of behavior, state, identity and time is a big source of
implicit complexity in current object systems

! We need to be explicit about time

! We should primarily be programming with pure functions and
immutable values

! Epochal time model a general solution for the local process

! Current infrastructures (JVM) are sufficient for implementation

Future Work

! Coordinating internal time with external time

! Tying STM transactions to I/O transactions

! e.g. transactional queues and DB transactions

! Better performance, more parallelism

! More data structures

! More time constructs

! Reconciling epochal time with OO - is it possible?

"It is the business of the future to
be dangerous; and it is among the
merits of science that it equips the
future for its duties."
Alfred North Whitehead

