Are We There Yet?

A deconstruction of object-oriented time

Rich Hickey



Provocation

* Are we being well served by the popular OO languages?

* Have we reached consensus that this is the best way to
build software?

* Is there any evidence that this is so?
# Is conventional OO a known good?

* or just so widely adopted we no longer have the ability
to see its attendant costs or limitations?



A Deeply
Entrenched Model

* Popular languages today are
more similar than they are
different

* Single-dispatch, stateful OO

+ (Classes, inheritance, fields,
methods, GC

+ Smalltalk, Java, C#, Python,
Ruby, Scala...




Not so Different

* Differences are superficial
+ MI/Mixins/Interfaces
* Static/Dynamic typing
* Semicolons/indentation/blocks
* Closures/Inner-classes

* Preferences have more to do with
programmer sensibilities and
expressivity than core principles

* Different cars, same road




Has OO “Won™ !

* Are we just going to tweak this model for the next few
decades?

* People seem to like it

* Success has bred increasing conservatism, and slowed the
pace of change

* The purpose of this talk is not to beat up on OO

* Just admit the possibility that not only are we not there, we
may be driving on the wrong road.



What are we
missing?

* Are we ready for an increasingly
complex, concurrent and
heterogeneous world, or will we
be facing some fundamental
impedance mismatch?

* What pressures should drive the
adoption of new (and often old)
ideas not yet in the mainstream?




Some Critical ldeas

* Incidental complexity
* Time/Process
* Functions/ Value/Identity /State

* Action/Perception



“Seek simplieity, and distrust it.”

Alfred North Whitehead




Incidental complexity

* Not the complexity inherent in the problem

* Comes along as baggage in the way we formulate our solutions, our
tools or languages

* Worst when a side effect of making things appear simple



C++

* Foo *bar(...); / /what’s the problem?
* Simple constructs for dynamic memory
* Simple? - same syntax for pointers to heap and non-heap things
* Complexity - knowing when/if to delete
# No standard automatic memory management
* Presents inherent challenge to C++ as a library language

* Implicit complexity we are no longer willing to bear



Java

* Date foo(...); / /what’s the problem?
* Simple - only references to dynamic memory, plus GC
* Simple? - same syntax for references to mutable/immutable things
+ Complexity - knowing when you will see a consistent value

* Not (just) a concurrency problem. Can we ‘remember’ this
value, is it stable? If aliased and mutated, who will be affected?

* No standard automatic time management



Famiharity Hides Complexity

* For too many programmers, simplicity is measured superficially:
* Surface syntax
* Expressivity

* Meanwhile, we are suffering greatly from incidental complexity
* Can’t understand larger programs
* Can’t determine scope of effects of changes to our programs

* Concurrency is the last straw



“Civihization advances by
extending the number of
important operations which we
can perform without thinking
about them.”

Alfred North Whitehead




Pure Functions are Worry-lree

* Take/return values * Huge benefits to using pure
functions wherever possible

* Local scope
* In contrast:

* No remote inputs or etfects
* Objects + methods fail to
* No notion of time meet the “without thinking
about them” criteria

* Same arguments, same result

+ Easy to understand, Change,
test, compose



But - many interesting programs

aren’t functions

* E.g.-"google’ is not a function

* Our programs are increasingly
participants in the world

* Not idealized timeless
mathematical calculations

+ Have observable behavior over time
* get Inputs over time

* We are building processes

CO' )810 ‘object relational impedance mismatch | (search ) Advanced
Web (¥ Show options... Results 1 - 10 of about 19,900 for object relational impedance m

Object-relational impedance mismatch - Wikipedia, the free ...

The object-relational impedance mismatch is a set of conceptual and technical difficulties
that are often encountered when a relational database management ...

Mismatches - Solving impedance mismatch - Contention
en.wikipedia.org/wiki/Object-relational impedance mismatch -

Impedance mismatch - Wikipedia, the free encyclopedia - 2 visits - Sep 1
Apr 18, 2009 ... Impedance matching, the electronics design practice of setting the input .
Object-relational impedance mismatch, a set of conceptual and ...
en.wikipedia.org/wiki/lmpedance _mismatch -

The Object-Relational Impedance Mismatch

In the early 1990s the differences between the two approaches was labeled the *
object-relational impedance mismatch”, or simply “impedance mismatch” for ...
www.agiledata.org/essays/impedanceMismatch.html -

Ask Tom "Object relational impedance mismatch"

Thanks for the question regarding "Object relational impedance mismatch” ... What are
your thoughts on the so called "object relational impedance mismatch"? ...
asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11... -

Object Relational Impedance Mismatch

The "ObjectRelationallmpedanceMismatch" is label for a set of problems encountered when
using a relational database to store (the state of) objects from ...
c2.com/cgi/wiki?ObjectRelationallmpedanceMismatch -

A Classification of Object-Relational Impedance Mismatch

Object and relational technologies are grounded in different paradigms. Each technology
mandates that those who use it take a particular view of a universe ...
www2.computer.org/portal/web/csdl/doi/.../DBKDA.2009.11 -




“That “all things tlow” 1s the first
vague generalization which the

unsystematized, barely analysed,
intuition of men has produced.”

Alfred North Whitehead




OO0 and “Change”

* Object systems are very simplistic models of the real world
* Most embody some notion of “behavior” associated with data
* Also, no notion of time
* QOr, presume a single universal shared timeline
* When concurrency makes that not true, breaks badly
* Locking an attempt to restore single timeline

* No recipe for perception/memory - call clone()?



We have gotten this wrong!

Process
and Reality

* By creating objects that could
‘change’ in place

* ... objects we could 'see' change

+ Left out time and left ourselves
without values

* Conflated symbolic reference L= 2
(identity) with actual entities / o

Alfred North Whitehe

* Perception is fragile




“No man can cross the same river
twice.”

Heraclitus




Oops!

* Seemed to be able to change memory in place
* Seemed to be able to directly perceive change
* Thus failed to associate values with points in time
* New architectures forcing the distinctions more and more
* Caching
* Multiple versions of the value associated with an address

* Maintaining the illusion is getting harder and harder



A Simplified View
‘apologies to A.N.W.)

* Actual entities are atomic immutable values

* The future is a function of the past, it doesn’t change it
* Process creates the future from the past

* We associate identities with a series of causally related values
* This is a (useful) psychological artifact
* Doesn’t mean there is an enduring, changing entity

* Time is atomic, epochal succession of process events



“T'here 1s a becoming of
continuity, but no continuity of
becoming”

Alfred North Whitehead




Terms (for this talk]

* Value * State
* An immutable magnitude, * Value of an identity at a
quantity, number... or moment in time
immutable composite
thereof * Time
+ Identity + Relative before/ after

ordering of causal values
* A putative entity we

associate with a series of
causally related values
(states) over time



Why should we care?

<

Our programs need to make decisions

Making decisions means operating on stable values
Stable values need to be:

* Perceived

* Remembered

We need identity to model things similarly to the way we think about
them

* while getting state and time right






\\

"xf-g
V““"
o {2080
(?‘
ﬂ

'>~

— R ’s‘l

o ﬁf R

N

e =

/"4 A A §
o "“.tl

?\
'

We don't make decisions about
things i the world by taking turns
rubbing our brains on them.




Nor do we get to stop the world
when we want to look around




L

-

Perceptlon 1S masswely parallel and
requires no coordination

This is not message passing]!



Perception

* We are always perceiving the (unchanging!) ... LT egaas Eops
past

* Qur sensory /neural system is oriented
around:

=
v
L
c
o
>
v
-~
n

+* Discretization

90 de Ruyter van
Milliom Bialek

* Simultaneity detection

* Jenoring feedback, we like snapshots



@ veoua

2T

TN e

AT T — N

Action, 1n a place, must be sequential

Action and perception are different!



Epochal Time Model

Process events
(pure functions)

Identity
(succession of states)

y

\/ \“

Observers/ perception/ memory



Implementation 1deas

* We need language constructs * We can (must?) consume
that will let us efficiently: memory to model time!
* Represent values. Create and * Old value -> pure function ->
share. new value
* Manage value succession/ * Values can be used as
causation/obtention perceptions/ memories
* We need coordination constructs * GC will clean up the no-
to moderate value succession longer-referenced “past’

+ Can also serve as identities



Persistent data structures

* Immutable * Creation of next value never
disturbs prior, nor impedes
* Ideal for states, snapshots perceivers of prior

and memories
* Substantial reduction in
* Stable values for decision complexity:
making and calculation
+ APersistentStructure foo();
* Never need synchronization!
* Alias freely, make modified
+ ‘Next’ values share structure versions cheaply
with prior, minimizing copying
* Rest easy, stay sane



....;.
R e e
z/l& ' f.’, Rt .1..,.:“1 S -~
.....wsy.;......?.r),..;b

u.n‘..l.\..r.r.ﬂ
- b e, e ¢ gl |

-




Trees!

A

* Shallow, high branching factor * Can implement vectors and
hash maps/sets etc

* Nodes use arrays



Structural Sharing




Declarativeness and Parallelism

* Performance gains in the future = * Tree-based persistent data

will come from parallelism structures are a perfect fit
* Parallel code needs to be * Already set up for divide
declarative - no loops! and conquer and

composable construction
* map/reduce etc
* IMO - These should be the
+ Parallel code is easier when most common data structures

functional in use, yet almost unused
outside of FP

* else will get tied up by
coordination



“It’s the performance, stupid!”

the Audience

* Persistent data structures are * Le. the ‘birthing process’ of the
slower in sequential use next value can use our old (and
(especially ‘writing’) new) performance tricks:

* But - no one can see what * Mutation and parallelism
happens inside F

* Parallel map on persistent
vector same speed as loop on
ju.ArrayList on quad-core

+ Safe “transient’ versions of PDS

LlNJ :\> M possible, with O(1) conversions

between persistent/ transient




Epochal Time Model

Process events
(pure functions)

Identity
(succession of states)

y

\/ \“

Observers/ perception/ memory



T1me constructs

+ Need to ensure atomic state
succession

* Need to provide point-in-time
value perception

* Multiple timelines possible
(and desirable)

* Many implementation
strategies with different
characteristics / semantics

CAS - uncoordinated 1:1

Agents - uncoordinated,
async. (Like actors, but local
and observable)

STM - coordinated, arbitrary
regions

Maybe even ... locks?

* coordinated, fixed regions



CAS as Time Construct

I\ .
/\ 1/ \\ J

AtomicReference ;I
2 <2

* swap(aRef, f, args) + 1:1 timeline /identity

* f(vN, args) becomes vIN+1 * Atomic state succession

* can automate spin * Point-in-time value perception



Agents as Time Construct

NOIOIGIoI0%

VN+1

>

* send(aRef, f, args) ¥ )
VNs
* returns immediately AN
* queue enforces serialization O ‘O
* f(VN, args) becomes vN+1 + 1:1 timeline /identity
* happens asynchronously in * Atomic state succession
thread pool thread

* Point-in-time value perception






STM

* Coordinates action in (arbitrary) regions involving multiple
identities / places

* Multiple timelines intersect in a transaction
* ACI properties of ACID
* Individual components still follow functional process model

* f(vN, args) becomes vIN+1



STM as Time Construct




Perception in (MVCC) S'TM

.- - A e S N e W e t....... Transactional
e et e e d - gnapshots

.........................................................................................

SCanS :' ---------------------------- IJI ........ ‘:

.............................................



Multversion concurrency control

* No interference with processes + Allows observers/readers to
have timeline

* Models light propagation,

sensory system delay + Composite snapshots are like
visual glimpses, from a
* By keeping some history point-in-time in the

transaction universe

+ Persistent data structures
make history cheap * Free reads are like visual

scans that span time



ST'Ms differ

* Without MVCC you will either be:

* limited to scans

* back to “stop the world while I look at it”
* Granularity matters!

* STMs that require a transaction in order to see consistent values of
individual identities are not getting time right, IMO



Conclusions

* Excessive implicit complexity begs for (and sometimes begets) change

* The conflation of behavior, state, identity and time is a big source of
implicit complexity in current object systems

* We need to be explicit about time

* We should primarily be programming with pure functions and
immutable values

* Epochal time model a general solution for the local process

* Current infrastructures (JVM) are sufficient for implementation



Future Work

* Coordinating internal time with external time
* Tying STM transactions to I/ O transactions
* e.g. transactional queues and DB transactions
* Better performance, more parallelism
* More data structures
* More time constructs

+ Reconciling epochal time with OO - is it possible?



"It 1s the busimess of the future to

be dangerous; and it 1s among the

merits of science that it equips the
future for its duties.’

Alfred North Whitehead




