
Blame Tracking

Jeremy Siek
University of Colorado

JOINT WORK WITH PHILIP WADLER

an explosive combination!

dynamic languages are great!

software libraries are great!

the combination is explosive!

IT’S HAPPENED TO YOU:
YOU’VE CALLED A LIBRARY FUNCTION
AND THEN... FROM SOMEWHERE DEEP

INSIDE... KAABLAM!

Traceback... TypeError
I'm having problems simply connecting to gdata from app engine. I
realize that there are several ways to connect but I was hoping to use
the ProgrammaticLogin method. I've created a package that includes the
followin connectToGoogle function which always fails at the
ProgrammaticLogin() call. I've attached the error below. I've
confirmed that both the password and email are correct.

import gdata
from google.appengine.ext import webapp

def connectToGoogle(password):
 gd_client = gdata.docs.service.DocsService()
 gd_client.email = 'li...gmail.com'
 gd_client.password = password
 gd_client.source = 'mysite'
 gd_client.ProgrammaticLogin()
 return gd_client

Traceback (most recent call last):
 File "/Applications/GoogleAppEngineLauncher.app/Contents/Resources/
GoogleAppEngine-default.bundle/Contents/Resources/google_appengine/google/
appengine/ext/webapp/__init__.py", line 500, in __call__ handler.post(*groups)
 File "/Users/liamks/personalsite/main.py", line 97, in post gd =
gsite.connect.connectToGoogle(password)
 File "/Users/liamks/personalsite/gsite/connect.py", line 16, in connectToGoogle
gd_client.ProgrammaticLogin()
 File "/Users/liamks/personalsite/gdata/service.py", line 749, in ProgrammaticLogin
 headers={'Content-Type':'application/x-www-form-urlencoded'})
 File "/Users/liamks/personalsite/atom/http.py", line 134, in request
 connection.putheader(header_name, all_headers[header_name])
 File "/Applications/GoogleAppEngineLauncher.app/Contents/Resources/
GoogleAppEngine-default.bundle/Contents/Resources/google_appengine/
google/appengine/dist/httplib.py", line 174, in putheader
 line = '\r\n\t'.join(lines)
TypeError: sequence item 0: expected string, int found

SUBJECT:
GDATA LOGIN ISSUES (TYPEERROR: SEQUENCE
ITEM 0: EXPECTED STRING, INT FOUND)
FROM:
LDK (LIAM...@GMAIL.COM)
DATE:
FEB 13, 2009 8:56:22 AM
LIST:
COM.GOOGLEGROUPS.GDATA-PYTHON-CLIENT-
LIBRARY-CONTRIBUTORS

http://markmail.org/message/qfuqkjj5oaznd4gx
http://markmail.org/message/qfuqkjj5oaznd4gx
http://markmail.org/message/qfuqkjj5oaznd4gx
http://markmail.org/message/qfuqkjj5oaznd4gx

leaky abstractions

The Law of Leaky Abstractions: “All non-trivial
abstractions, to some degree, are leaky” – Joel
Spolsky

my take: many abstractions are air tight when
everything is going as planned... its just when
things go wrong that they start to leak

this is especially true of libraries in dynamic
languages

plugging the leaks

We try to plug these leaks with input checking
code...

function send(msg) {
 validateMsg(msg)
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = msg
}
function validateMsg(msg) {
 function isObject(v)
 v != null && typeof v == "object"

 function isAddress(a)
 isObject(a) && isObject(a.at) && typeof a.at[0] == "string"
 && typeof a.at[1] == "string" && typeof a.name == "string"

 if (!(isObject(msg) && isObject(msg.to) &&
 msg.to instanceof Array && msg.to.every(isAddress) &&
 isAddress(msg.from) && typeof msg.subject == "string" &&
 typeof msg.body == "string" && typeof msg.id == "number" &&
 uint(msg.id) === msg.id))
 throw new TypeError
}

declarative checking

types (e.g. int, string) naturally express many of
these checks

compiler generates run-time checks

type Message = { to: [Addr],
 from: Addr,
 subject: string,
 body: string,
 id: uint }

function send(msg : Message) {
 msg.id = sendToServer(JSON.encode(msg))
 database[msg.id] = msg
}

throwing a monkey
wrench in the works
callbacks & object methods cannot always be
immediately checked

def g(cb : Int -> Int):
 ...
 cb(-1) + 5

def f(x):
 if 0 <= x:
 return 2
 else:
 return True

g(f) WILL F RETURN AN INT? DON’T KNOW.

blame tracking

Originates from work on contract checking by
Findler and Felleisen [ICFP 2002]

1 def g(cb : Int -> Int):
2 ...
3 cb(-1) + 5
4 ...
5
6 def f(x):
7 if 0 <= x:
8 return 2
9 else:
10 return True
11
12 g(〈Int -> Int〉12f)

ERROR IS CAUGHT HERE,
BUT BLAMES LINE 12

COMPILER
GENERATED
WRAPPER

wrapper bloat
def even(n : Int, k : Dyn->Bool) -> Bool:
 if n == 0:
 return k(〈Dyn->Bool〉 True)
 else:
 return odd(n - 1, 〈Bool->Bool〉k)

def odd(n : Int, k : Bool->Bool) -> Bool:
 if n == 0:
 return k(False)
 else:
 return even(n - 1, 〈Dyn->Bool〉k)

even(99, k) → odd(98, 〈Bool->Bool〉k)
 → even(97, 〈Dyn->Bool〉〈Bool->Bool〉k)
 ...

Example from Herman et al. [TFP 2007]

the quest for
space efficiency

Threesomes [Siek and Wadler, in review]

Coercion Calculus
[Henglein, SCP 1994]

Space efficient checking
[Herman et al.,TFP 2007]

Mostly space efficient checking
[Siek and Taha, ECOOP 2007]

Space efficient blame tracking
[Siek et al., ESOP 2009]

twosomes

twosomes, the standard way to represent
wrappers:

we’ve proven that a sequence of twosomes can
always be collapsed to an equivalent pair of
twosomes:

〈T ⇐ S〉e

〈Tn ⇐ Tn-1〉...〈T3 ⇐ T2〉〈T2 ⇐ T1〉e

〈Tn ⇐ R〉〈R ⇐ T1〉e

greatest lower bound &

The type R is the greatest lower bound of all the
types in the sequence of twosomes

 Int & Int = Int
(S -> T) & (S’ -> T’) = (S & S’) -> (T & T’)
 Dyn & T = T
 T & Dyn = T

〈Tn ⇐ R〉〈R ⇐ T1〉e

R = Tn & Tn-1 & ... & T2 & T1

threesomes

We introduce “threesomes” simply as shorthand
for a pair of twosomes:

〈Tn ⇐ R〉〈R ⇐ T1〉e

〈Tn ⇐ R ⇐ T1〉e

becomes

threesomes with blame

But what about the blame tracking information?

We compress the blame information into the
middle type

〈Tn ⇐ Tn-1〉bn-1...〈T3 ⇐ T2〉b2〈T2 ⇐ T1〉b1e

 Intb1 & Intb2 = Intb2

(S -> T)b1 & (S’ -> T’)b2 = (S & S’) ->b2 (T & T’)
 Dyn & Tb = Tb
 Tb & Dyn = Tb

preserving tail calls

Compiler-generated wrappers can turn tail calls
into non-tail calls, leading to bloat on the stack

Solution: inspect the stack and compress
wrappers

def even(n : Int) -> Dyn:
 if n == 0:
 return 〈Dyn〉True
 else:
 return 〈Dyn〉odd(n - 1)

def odd(n : Int) -> Bool:
 if n == 0:
 return False
 else:
 return 〈Bool〉even(n - 1)

dealing with failure

When compressing wrappers in tail position, there
may be a conflict in the types, in which case there
is no GLB.

We can’t signal the error immediately, that would
change the order of evaluation.

We instead record the error as the type ⊥

failure & blame

The blame handling for type ⊥ is delicate

Can’t just annotate ⊥ with a single piece of blame
info:

Can’t choose between label l or n, both are
needed.

 〈Int⇐Dyn〉l〈Dyn⇐Bool〉m〈Bool⇐Dyn〉n〈Dyn⇐Bool〉o True → blame l

 〈Int⇐Dyn〉l〈Dyn⇐Bool〉m〈Bool⇐Dyn〉n〈Dyn⇐Int〉o 1 → blame n

failure and blame

Need to remember two blame labels and a type

⊥(l,Tm)

S & ⊥(m,Gp) = ⊥(m,Gp)
⊥(m,Gq) & T = ⊥(m,Gp)
 where head(T)=Gp
⊥(m,Hl) & T = ⊥(l,Gp)
 where head(T)=Gp and H ≠ G

Conclusion

Blame tracking provides improved modularity,
better error messages

Finding a way to do space-efficient blame tracking
was non-trivial, but now it’s a solved problem

Threesomes provide a simple data structure and
algorithm for representing sequences of wrappers

