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Why Still (or Again) Register Allocation?
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SPECjvm2008, Lagom, all benchmarks w/o SciMark
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Register Allocation and SSA Form

 Register allocation
 Graph coloring algorithm
 Linear scan algorithm

 Static single assignment (SSA) form
 One definition per variable that dominates all uses

 Variable alive continuously from this single definition to all uses
 Dead variables never become alive again spuriously
 The “corner case” examples of previous papers are impossible

 Interference graph is chordal
 Graph coloring in polynomial time

 Variables that interfere somewhere also interfere at one 
definition
 Enough to check interference once at definition point
 No explicit interference graph necessary
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Graph Coloring on SSA Form
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[Hack 2007, PhD Thesis]
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Linear Scan not on SSA Form

SSA Form Deconstruction

LIR not in SSA Form

Requires a Data Flow Analysis

Lifetime Intervals

Splitting and Spilling of Intervals

Registers Assigned to Intervals

LIR not in SSA Form

Linear Scan on SSA Form

LIR in SSA Form

Lifetime Intervals

Registers Assigned to Intervals

LIR not in SSA Form

No Iterative Data Flow Analysis

Splitting and Spilling of Intervals

SSA Form Deconstruction

Phases of Linear Scan Algorithm

LIR Generation

Lifetime Analysis

Linear Scan Algorithm

Resolution
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Lifetime Intervals Without SSA Form

B2 B3B1 B4

20 22 24 26 28 30 32 34

i10

i11

i12

i13

i14

i15

36 38 40 42

Lifetime Interval

Definition position

Use position 42: label B4
use R10, R12

30: label B3
32: mul R12,R13 -> R14
34: sub R13, 1 -> R15
36: move R14 -> R12
38: move R15 -> R13
40: jump B2

24: label B2
26: cmp R13, 1
28: branch lessThan B4

define R10, R11
20: move 1 -> R12
22: move R11 -> R13



Lifetime Intervals With SSA Form
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34: label B4
use R10, R12

B2 B3B1 B4

20 22 24 26 28 30 32 34

i10

i11

i12

i13

i14

i15

Lifetime Interval

Definition position

Use position

26: label B3
28: mul R12, R13 -> R14
30: sub R13, 1 -> R15
32: jump B2

20: label B2
phi [1, R14] -> R12
phi [R11, R15] -> R13

22: cmp R13, 1
24: branch lessThan B4

define R10, R11



Construction of Lifetime Intervals
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B2 B3B1 B4

20 22 24 26 28 30 32 34

i10

i11

i12

i13

i14

i15

Add Input Operands of Successors’ Phis

Initial Live Set from Successors

Process Operations in Reverse Order

Remove Phi Functions from Live Set

Extend Live Ranges of Loop Variables

34: label B4
use R10, R12

26: label B3
28: mul R12, R13 -> R14
30: sub R13, 1 -> R15
32: jump B2

20: label B2
phi [1, R14] -> R12
phi [R11, R15] -> R13

22: cmp R13, 1
24: branch lessThan B4

define R10, R11



Irreducible Control Flow
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B2 B3B1 B4

i10

i20

B5 B6

i10

i11

i12

i20

i21

i22

phi [R10, R12] -> R11

phi [R10, R11] -> R12

phi [R20, R22] -> R21

phi [R20, R21] -> R22



Linear Scan Algorithm
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Changes to Linear Scan Algorithm
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Linear scan not on SSA form

i10

i11

i10 has lifetime hole

i10 and i11 can intersect

Without SSA form:
Intervals that are currently 
not live can block registers

Linear scan on SSA form

i10

i11

i10 has lifetime hole

i10 and i11 never intersect

SSA form guarantees:
Intervals that are currently 
not live never block registers



B3 – B4:
move s1 -> eax

ebx

i13 ecx

SSA Deconstruction during Resolution 
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B2 B3 B4

i12

B1

i14 ecx

s2

phi [R13, R12] -> R14

B2 – B4:
No move necessary

B3 – B4:
move s1 -> eax
move s2 -> ecx

Resolution
Visit intervals live across 
control-flow edges

SSA Deconstruction
Also visit intervals starting 
at the control-flow edge

i10 eax s1 eax



23
%

18
%

23
%

18
% 30

%

23
%

24
%

17
%

36
%

27
% 38

%

28
%

32
%

22
% 37

%

27
%

31
%

31
%

31
%

31
%

25
%

25
%

29
%

25
%

10
%

11
%

9%

10
%

14
%

14
%

10
%

11
%

0%

20%

40%

60%

80%

100%

Base SSA Base SSA Base SSA Base SSA

Resolution
Linear Scan
Lifetime Analysis
LIR Construction

Compilation Time
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SPECjvm2008 SPECjbb2005 DaCapo SciMark

Compilation time of baseline and SSA form version of linear scan

2 * Intel Xeon X5140, 2.33 GHz, 4 cores, 32 GByte memory
Ubuntu Linux, kernel version 2.6.28
SPECjvm2008: Lagom w/o SciMark



Phi Functions and Move Instructions
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DaCapo SciMark

Baseline SSA Form Baseline SSA Form

Before Register Allocation

Moves 402,678 355,936 -12% 908 593 -35% 

Phi Functions 0 20,542 0 168 

After Register Allocation

Moves Register to Register 127,318 124,351 -2% 193 177 -8% 

Moves Constant to Register 71,967 70,663 -2% 99 98 -1% 

Moves Stack to Register 3,718 3,722 +0% 12 12 0% 

Moves Register to Stack 65,973 56,639 -14% 166 158 -5% 

Moves Constant to Stack 0 1,386 0 1 

Moves Stack to Stack 0 647 0 0 



Future Work
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Traditional Graph Coloring Traditional Linear Scan

Graph Coloring on SSA Form Linear Scan on SSA Form

Hybrid Solution

Slow, iterative algorithm
Good code quality

Fast, linear algorithm
Good enough code quality

Take the best from both worlds:
Global spilling decisions using interference graph.

Some local decisions for spilling and fixed registers.
Fast and good code quality?

Interference graph not necessary for 
allocation, but used for global spilling 

decisions

Lifetime intervals not necessary for 
allocation, but used for spilling 
decisions and fixed registers
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