
Noop
A language for teams of 2 or more
http://noop.googlecode.com

Alex Eagle
Jérémie Lenfant-Engelmann

Google

Questions? http://bit.ly/noop-jls

Why another language?

Now the developer stays involved
What is legacy code?

(Most code is legacy code)

What is non-legacy code?

(Most languages are focused on it)

Noop will improve the effectiveness
of working on legacy code

Noop's mission

Help teams develop software that is easier to understand and
maintain.

Meet the team:
... Sloth

 All of you

 Us

Theorem 1

Better unit testing leads to
better software

What is hard to test?

class A {
 void do(String s) {new B().getData(s);}
}
class B {
 public B() { DBConnFactory.init(); }
 void getData(String s) {...}
}
class C extends A {
 void getUser() {super.do("select usr");}
}

Seams

"A seam is a place where you can
alter behaviour in your program
without editing in that place"

Seams are critical for unit testing

Every place where we had no seam was due to a language
feature!

Decision 1

In Noop, there will be a seam
between every pair of classes

Dependency Injection in Noop

Instead of We will

new Foo(); Request injection of an
instance of Foo
(or a subtype)

extends Composition, via
delegation with implied
method forwarding

static
(method or field)

Inject a dependency that is
bound as a Singleton

final
(class or method)

we don't have subclasses!

Dependency Injection Example

// [this is *proposed* syntax]

// BankServiceImpl.noop
1 class BankServiceImpl(DbConnection c)
2 implements BankService { /* ... */ }

// Mine.noop
1 class Mine() implements Application {
2 Int main(List<String> args) {
3 scope(BankService -> BankServiceImpl,
4 ConnectString -> "jdbc:mydb:") {
5 BankService service = BankService();
6 } // exits the scope, back to parent injector
7 }
8 }

Named Scope
// MyScope.noop
1 scope MyScope {
2 MyInterface -> MyImplementation;
3 }

// Someclass.noop
1 String helloWorld() scope MyScope {
2 // some code
3 }
4 String goodbyeWorld() {
5 scope MyScope {
6 // some code
7 }
8 }

Aliased types

In Guice:
@Named("port") Integer port;
@Inject class Server(@Named("port") Integer port);

We provide an alias keyword, associating another identifier with
the same type:
alias Int Port;

Now you can inject the port number:
Port -> 9876;
// ...
class Server(Port port) {}

Composition Example
// Foo.noop
1 class Foo() {
2 String doFoo() { return "foo"; }
3 String doBar() { return "bar"; }
4 }
// Delegator.noop
1 class Delegator(delegate Foo foo) {
2 override String doBar() { return "BAR"; }
3 }

1 // calling code can then do the following...
2 Foo foo = Foo();
3 Delegator d = Delegator(foo);
4 assertEquals("foo", d.doFoo());
5 assertEquals("BAR", d.doBar());
6 // and Delegator is assignable to a Foo variable
7 Foo otherFoo = d;

What do teams do?
Teams that write large-scale software systems communicate in
code.

This means, they:

Have to write their code

Have to fix their code

Have to extend their code

Have to read their code

Have to stay sane

Theorem 2

Code is read much more than it is
written

Readability

Always Be Consistent - no optional syntax
$_
object.methodCall

Documentation to be checked as much as possible, including
parameter names
markup
example code
links

Non-noop coders should be able to review the code.

Testing DSL

Why should tests be methods in a class?

// in any file, including Interpreter.noop
test ("interpreter") {
 test ("it should parse hello world") {
 assertEquals(new Parser.parseAST("class Hello(){}"),
 "(CLASS Hello)");
 }
}

Leaves are tests, non-leaves are suites

Like-named suites are grouped together

Choices, choices
No primitive types, everything is an Object
final fields/variables by default, mutable keyword otherwise
Strong static typing (possibly implied)
StdLib: reflect best options out there, ie. JodaTime
Exceptions: only unchecked
Properties: a lot like C#
No new keyword - just Python-style Type()
Type appears to the left of the variable (like Java)
One class defined per file, must match filename
Namespace determined by relative path from source root
Closures/lambdas/blocks: sounds great
Parameterized types: sounds great

But what if I want to do X?

X: "code to 200 columns wide"

X: "name my methods silly things"

X: "create static methods"

What's next?
Writing the interpreter now. It runs "Hello World", you can
download a snapshot from our continuous build.

Haven't thought much about the compiler yet, but we plan to
emit Java bytecodes.

If you'd like to get involved, talk to us after, or join
http://groups.google.com/group/noop-dev

If you'd like to stay tuned to announcements, just join
http://groups.google.com/group/noop-announce

Topics for discussion

Do you use Dependency Injection? Would you want
language-level support?
Is there a case where you feel you really want
implementation inheritance?
Partial injection
Newable / Injectable
Errors vs. Exceptions

