
P8, IBM’s PHP on Java Virtual
MachineTM Project

Rob Nicholson
rob_nicholson@uk.ibm.com

© 2008 IBM Corporation
2

Why Build PHP on the JVM?

• 20M+ web domains use PHP
• 3M+ Programmers know PHP
• Huge repository of reusable modules, snippets, extensions.
• Easy language to learn -> Mashups
• Language has evolved to be easy to use

TIOBE Programming Community Index (Sep 2008)
•Same-process interaction Java <-> PHP.
•Combine Java and PHP assets.
•Combine Java and PHP programmers.

•Data sharing without copies.
•Extend Java with PHP.

•Benefit from vast investment in Java VM
•IBM WebSphere sMash has Groovy +P8

© 2008 IBM Corporation
3

What is PHP?
• Procedural and OO language.
• Engine and Extensions Implemented in C.
• Frameworks, Modules, Applications

implemented in PHP.
• Large and active open source communities.

A
pache

H
TTP server

Zend Engine

Virtual Machine
C

Extensions

Scripts

Modules Frameworks

Applications

Databases

•No specification
•Incomplete documentation
•Incomplete tests
•No Unicode
•Reference Implementation based language

© 2008 IBM Corporation
4

What is P8?
• PHP 5 on Java 5 SE or later.
• Hand crafted lexer, LPG generated parser.
• Started as Interpreter -> transitioning to compiler.

• Maintain the illusion of interpreter.
• Extensibility via XAPI

• XAPI-C for C extensions from php.net
• XAPI-J for Java extensions, native libraries

invoked over JNI and Project Zero interface

• Java Bridge
• Extend Java classes in PHP.
• Implement Java Interfaces in PHP.
• PHP proxies over Java Classes

• Debug using via DBGp using Eclipse with PDT

P8 Runtime

PHP Scripts CLI

SAPI-J

PZ Http

Parser

Interpreter/Compiler

Runtime

PHP Engine

Java
ExtensionsC

Extensions

D
ebug (D

B
G

p)

Cache

IR

XAPI-J
XAPI-C

Native
code

© 2008 IBM Corporation
5

How applications are supported.

Zend E
ngine 2

ZE
2 E

xtension interface

file
string
pcre

DOM

App1
App2
App3

App4

PHP.net

P
8

file
string
pcre

DOM

App1
App2
App3

App4

X
A

P
I-J

todo
X

A
P

I-C
todo

ZE
2 E

xtension interface

sMash

Apps depend on
extensions which
depend on ZE2
interfaces

ArrayArray

© 2008 IBM Corporation
6

PHP Characteristics
• Nothing persists request to request
• Dynamic runtime inclusion:

– Many versions of function foo() or class bar
• In scope version depends on includes at runtime

• Dynamically declared/used symbols
– Function/classes are conditionally declared
– Variables may indirectly referred using string values

• Both copy semantics and references allowed
– Arrays and strings are copied for each assignment to any variable
– References can be created and used almost transparently

• Heavy use of foreign language functions
– Heavy calculations are often done in libraries written in C/C++
– So-called extensions written in C help PHP’s rich language constructs

• OO PHP becoming popular
~ 10x slower than equivalent Java

• Functions of unconstrained length
– Exceed JVM method length limit

© 2008 IBM Corporation
7

Typical PHP

inc1.php:

<?php
include “inc1.php”;
$var=1;
foo (“bar.php”,$var);
include $var;

?>

index.php:

<?php
function foo($a, &$b) { $b=$a; }

?>

© 2008 IBM Corporation
8

PHP Request Processing.

Program stateProgram stateRequest functions
classes
constants
Global
variables

Objects

E
xecute includes

© 2008 IBM Corporation
9

Shared nothing architecture

© 2008 IBM Corporation
10

Compiling PHP Functions.
• Every function creates a class with single known

method.
public class Bytecode1_rob_php extends AbstractBytecode
{

public PHPValue run(Runtime runtime)
{

// currently still fetching arguments interpreter style
return null;

}
}• Function table is Hash “Name”=>Invocable

• Invoke using InvokeVirtual
– Use receiver to select which function to invoke.

© 2008 IBM Corporation
11

Function Invoke w/o
methodHandles

<?php
function foo(){}
foo();
bar();

?>

public class Bytecode1_rob_php extends AbstractBytecode
{

private static Invocable invocable1;
private Invocable invocable2;

public PHPValue run(Runtime runtime)
{

if(invocable1 == null)
invocable1 = Op.jhGetInvocable(runtime, “foo”);

Op.jhCALL(null, invocable1, runtime, true);
// PHPValue returnVal = invocable1.bytecode.run(runtime);

if(invocable2 == null)
invocable2 = Op.jhGetInvocable(runtime, “bar”);

Op.jhCALL(null, invocable2, runtime, true);
// PHPValue returnVal = invocable2.bytecode.run(runtime);

return null;
}

}

© 2008 IBM Corporation
12

JSR292

• Initially use MethodHandles to avoid
creating separate class for every PHP
function.

• Not yet clear that InvokeDynamic helps for
PHP Function Invocation.

• Will use InvokeDynamic for PHP method
invocation.

© 2008 IBM Corporation
13

PHPValue

• PHP native VM heavily exploits ability to
change types at runtime.

• PHP values change types during arithmetic.
• PHP retains references to values.

– Hard to devise efficient Value representation w/o
ability to change class of object at runtime.

• Currently we use indirection to resolve.
– Creates heap pressure.

© 2008 IBM Corporation
14

Unicode

PHP Engine

Java
ExtensionsC

Extensions

XAPI-J
XAPI-C

j.l.Sbyte[]

PHP String

•In PHP5, a string is a sequence of bytes.
•App programmer knows encoding (if any)
•So….Strings hold characters AND jpegs.
•Runtime does not know the difference.

•P8 wants to deal seamlessly with Java
Libraries.
•C extensions from PHP.net use byte[].

BUT

•P8 PHPString can be either j.l.S or
byte[]
•On demand conversion using runtime
encoding.
•Comparisons coerce byte[] to j.l.S iff
no decoding errors.

SO

© 2008 IBM Corporation
15

Questions…?

	P8, IBM’s PHP on Java Virtual MachineTM Project
	Why Build PHP on the JVM?
	What is PHP?
	What is P8?
	How applications are supported.
	PHP Characteristics
	Typical PHP
	PHP Request Processing.
	Shared nothing architecture
	Compiling PHP Functions.
	Function Invoke w/o methodHandles
	JSR292
	PHPValue
	Unicode
	Questions…?

