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Why Build PHP on the JVM?

• 20M+ web domains use PHP
• 3M+ Programmers know PHP
• Huge repository of reusable modules, snippets, extensions.
• Easy language to learn -> Mashups
• Language has evolved to be easy to use 

TIOBE Programming Community Index (Sep 2008)
•Same-process interaction  Java <-> PHP.
•Combine Java and PHP assets.
•Combine Java and PHP programmers.

•Data sharing without copies.
•Extend Java with PHP.

•Benefit from vast investment in Java VM
•IBM WebSphere sMash has Groovy +P8
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What is PHP?
• Procedural and OO language.
• Engine and Extensions Implemented in C.
• Frameworks, Modules, Applications 

implemented in PHP.
• Large and active open source communities.
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•No specification
•Incomplete documentation
•Incomplete tests
•No Unicode
•Reference Implementation based language
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What is P8?
• PHP 5  on Java 5 SE or later.
• Hand crafted lexer, LPG generated parser.
• Started as Interpreter -> transitioning to compiler.

• Maintain the illusion of interpreter.
• Extensibility via XAPI

• XAPI-C for C extensions from php.net
• XAPI-J for Java extensions, native libraries 

invoked over JNI and Project Zero interface

• Java  Bridge
• Extend Java classes in PHP.
• Implement Java Interfaces in PHP.
• PHP proxies over Java Classes

• Debug using via DBGp using  Eclipse with PDT
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How applications are supported.
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PHP Characteristics
• Nothing persists request to request
• Dynamic runtime inclusion:

– Many versions of function foo() or class bar
• In scope version depends on includes at runtime

• Dynamically declared/used symbols
– Function/classes are conditionally declared
– Variables may indirectly referred using string values

• Both copy semantics and references allowed
– Arrays and strings are copied for each assignment to any variable
– References can be created and used almost transparently

• Heavy use of foreign language functions
– Heavy calculations are often done in libraries written in C/C++
– So-called extensions written in C help PHP’s rich language constructs

• OO PHP becoming popular
~ 10x slower than equivalent Java 

• Functions of unconstrained length
– Exceed JVM method length limit
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Typical PHP

inc1.php:

<?php  
include “inc1.php”;
$var=1;
foo (“bar.php”,$var);
include $var;

?>

index.php:

<?php
function foo($a, &$b) {  $b=$a; }

?>
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PHP Request Processing.
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Shared nothing architecture
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Compiling PHP Functions.
• Every function creates a class with single known 

method.
public class Bytecode1_rob_php extends AbstractBytecode
{

public PHPValue run(Runtime runtime)
{

// currently still fetching arguments interpreter style
return null;

}
}• Function table is Hash “Name”=>Invocable

• Invoke using InvokeVirtual
– Use receiver to select which function to invoke.
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Function Invoke w/o 
methodHandles

<?php  
function foo(){}
foo();
bar();

?>

public class Bytecode1_rob_php extends AbstractBytecode
{

private static Invocable invocable1;
private Invocable invocable2;

public PHPValue run(Runtime runtime)
{

if(invocable1 == null)
invocable1 = Op.jhGetInvocable(runtime, “foo”);

Op.jhCALL(null, invocable1, runtime, true);
// PHPValue returnVal = invocable1.bytecode.run(runtime);

if(invocable2 == null)
invocable2 = Op.jhGetInvocable(runtime, “bar”);

Op.jhCALL(null, invocable2, runtime, true);
// PHPValue returnVal = invocable2.bytecode.run(runtime);

return null;
}

}
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JSR292

• Initially use MethodHandles to avoid 
creating separate class for every PHP 
function.

• Not yet clear that InvokeDynamic helps for 
PHP Function Invocation.

• Will use InvokeDynamic for PHP method 
invocation.
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PHPValue

• PHP native VM heavily exploits ability to 
change types at runtime. 

• PHP values change types during arithmetic.
• PHP retains references to values.

– Hard to devise efficient Value representation w/o 
ability to change class of object at runtime.

• Currently we use indirection to resolve.
– Creates heap pressure.
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Unicode

PHP Engine

Java 
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PHP String

•In PHP5, a string is a sequence of bytes.
•App programmer knows encoding (if any)
•So….Strings hold characters AND jpegs. 
•Runtime does not know the difference.

•P8 wants to deal seamlessly with Java 
Libraries.
•C extensions from PHP.net use byte[].

BUT

•P8 PHPString can be either j.l.S or 
byte[]
•On demand conversion using runtime 
encoding.
•Comparisons coerce byte[] to j.l.S iff
no decoding errors. 

SO
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Questions…?
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