J
0
=
0
o)
0]
0)
)
0
J
~
~

Engineering
Fine-Grained Parallelism
Support for Java 7

Doug Lea
SUNY Oswego

dl@cs.oswego.edu

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

Prelude: why researchers write libraries

+ Potentially rapid and wide adoption
+ Trying new library easier than new language

+ Help developers improve quality, productivity, performance
+ Support common design patterns and use cases

+ Encapsulate otherwise difficult, tedious, slow or error-
prone functionality

+ Mix of API design, algorithm design

+ Minimize compromises among efficiency, generality,
ease of learning, ease of use

+ Continuous evaluation
+ Developer feedback on functionality, usability, bugs
+ Ongoing software engineering, quality assurance

+ Explore edges among compilers, runtimes, applications

#+ Can be messy, hacky

Java Concurrency Support

+ Java1.0-1.4

+ synchronized keyword for locking

+ volatile modifier for consistent access

+ Thread class with methods start, sleep, interrupt, etc

¥ Object class monitor methods: wait, notify, notifyAll
+ Javab-6 (JSR166)

+ Mainly improve support for “server side” programs

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

+ Executors (thread pools etc), Futures

+ Concurrent collections (maps, sets, queues)

+ Flexible sync (atomics, latches, barriers, RW locks, etc)
+ Java7 (JSR166 “maintenance”)

+ Main focus on exploiting multi{core,proc}

+ Task-based parallelism (ForkJoin* classes)

+ Plus related fine-grained sync support 3

Executor Pattern and API

A GOF-ish pattern with a single-method interface

interface Executor { void execute (Runnable w); }

+ Separate work from workers (what vs how)

+ ex.execute (work), not new Thread(..) .start ()

+ The “work” is a passive closure-like action object

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

+ Executors implement execution policies
+ Might not apply well if execution policy depends on action
+ Can lose context, locality, dependency information

+ Reduces active worker objects to very simple forms

+ Base interface allows trivial implementations like
work.run () or new Thread (work) .start ()

+ Normally use group of threads: ExecutorService

ExecutorServices

Groups of thread objects each running some variant of:

while (...) { get work and run it; }

interface ExecutorService extends Executor {
void shutdown () ;
boolean awaitTermination(...);
//

<T> Future<T> submit (Callable<T> op) ;
}

+ Can multiplex many actions on few threads

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

+ Can serve as entry point for a set of computations
+ Clients can wait for and extract task results via Futures
+ Have lifecycles, configurations and policies

+ Task queues (FIFO, prioritized, etc), time-delayed execution,
saturation handlers, ...

Task-based Parallelism

+ Program splits computations into tasks

.3 + Worker threads continually execute tasks
@ : . : -
Jd + Plain Executors can express “join” dependencies only indirectly
via Futures
(),
=
0
o Pool
0 - N
U compute() { Work queue(s)
0 splt,
fork; .\.
join;
COMpOSE;

V- Y,

Parallel Recursive Decomposition

Typical algorithm

Result solve (Param problem) {
if (problem.size <= THRESHOLD)
return directlySolve (problem) ;
else {
in-parallel {
Result 1 = solve(leftHalf (problem)) ;
Result r = solve(rightHalf (problem)) ;
}

return combine(l, r);

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

}
}

+ To use ForkJoin framework, must convert method to task object

)
O
()
O
°
()
=
/)]
o
/)]
O
0
)
°

ForkJoinTasks

+ Context-aware (unlike in plain Executor)

+ Programmers can express simple execution dependencies
+ But only perform a single action (method compute)

+ A form of Future: Functions as Task Objects

+ A sweet spot between SIMD and unstructured async

+ Mainly used in a style pioneered by Cilk (PLDI 98)

+ fork makes task available for execution

+ Worker threads try to steal and execute

¥+ join awaits completion of compute

*+ Often, the calling thread itself executes it
+ A few other methods: cancellation, status checks, ...
% Including support for event-like async, usable for Actors
+ Subclasses RecursiveAction, RecursiveTask serve as bases for

action-like vs function-like user classes .

)
e,
)
o)
J
0
S
0
o)
0]
0)
0
0
J

ForkJoin Sort Example

class SortTask extends RecursiveAction {
final long[] array;
final int lo; final int hi; Stealing

SortTask (long[] array, int lo, int hi) {
this.array = array;
this.lo = lo; this.hi = hi;

}

protected void compute() {
if (hi - lo < THRESHOLD)
sequentiallySort (array, lo, hi);
else {
int m = (lo + hi) >>> 1;
SortTask r = new SortTask (array, m, hi);

r.fork (),
new SortTask (array, lo, m).compute() ; ~opping
r.join() ; (
merge (array, lo, hi); 00
}
}
// .

ForkJoinPool

+ Most ForkJoinTask operations are actually performed by worker
threads

+ Example: fork is just currentThread.pushTask (this)

+ Worker threads are managed by custom Executor

class ForkJoinPool extends AbstractExecutorService {
<T> T invoke (ForkJoinTask<T> task);

//
}

+ Clients submit top-level tasks to the pool

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

+ Non-FJ clients don't have work-stealing queues etc
+ Most efficient if top-level generate many subtasks
+ Submitted tasks held in LinkedTransferQueue (see later)

+ Clients can check status, await and extract results

10

)
O
()
O
°
()
=
/)]
o
/)]
O
0
)
°

Work Stealing

+ Each worker maintains own queue (actually a deque)
+ Workers steal tasks from others when otherwise idle
+ Portable: works for any number of processors
+ Low overhead
+ Min: 1 int per-task space overhead, 1 atomic op per exec
+ Relies on high-throughput allocation and GC
+ Most tasks are not stolen, so task objects die unused
+ 15+ years of experience (most notably in Cilk)
+ But not a silver bullet — need to overcome or avoid ...
+ Basic versions don't maintain processor memory affinities
+ Task propagation delays can hurt for looping constructions
+ Overly fine granularities can hit overhead wall
+ Restricted user sync: especially, no blocking 10

+ Sizing/Scaling issues past a few hundred processors .

Computation Trees and Deques

+ For recursive decomposition, deques arrange tasks with the
most work to be stolen first. (See Blelloch et al for alternatives)

Example of method s operating on array elements 0 ... n:

s(0,n) ,
s(0,n/2) s(n/2,n)
s(0,n/4) s(n/4,n/2) s(n/2,n/2+n/4) s(n/2+n/4,n)

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

12

Transferring Tasks

+ Queues perform a form of ownership transfer
+ Push: make task available for stealing or popping
+ needs lightweight store-fence
+ Pop, steal: make task unavailable to others, then run
+ Needs CAS with at least acquire-mode fence
+ Java doesn't provide source-level map to efficient forms

+ So implementation uses JVM intrinsics

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

T2: steal() --
T1: push(w) -- w = slot;

w.state = 17; . Queueslot if (CAS(slot, w, null))

slot = q; s = w.state; ...
Task w
Int state;

publish

consume
Require: s == 17

13

)
O
()
O
°
()
=
/)]
o
/)]
O
0
)
°

Task Deque Algorithms

+ Deque operations (esp push, pop) must be very fast/simple
+ Competitive with procedure call stack push/pop
+ Current algorithm requires one atomic op per push+{pop/steal}

+ This is minimal unless allow duplicate execs or arbitrary
postponement (See Maged Michael et al PPoPP 09)

+ Less than 5X cost for empty fork+join vs empty method call
+ Uses (resizable, circular) array with base and sp indices
+ Essentially (omitting emptiness, bounds checks, masking etc):
® Push(t): s
+ Pop(t): if (CAS(array[sp-1], t, null)) --sp;

sp++; storeFence; array[s] = t;

+ Steal(t): if (CAS(array[base], t, null)) ++base;
+ NOT strictly non-blocking but probabilistically so
+ A stalled ++base precludes other steals

+ But if so, stealers try elsewhere (use randomized selection)
14

A variant of classic
array push: q[sp++] =t
(and not much slower)

Sample code

Non-public method of
ForkJoinWorkerThread

)
0
csvoid pushTask (ForkJoinTask<?> t) ({
é ForkJoinTask<?>[] q = queue;
77 1nt mask = gq.length - 1; Per-thread array-
o] based queue with
m- 1nt S = sp-]--]- ; finc before slot write OK | power of 2 length
M orderedPut(q, s & mask, t);
$ i1f ((s -= base) == 0) Publish via JVM intrinsic
C . ensuring previous writes
pOOl .Signa lWork () ; commit before slot write
(inlined 1n the actual code)

else 1f (s == mask)
growQueue () ;

} Resize if full

Version 3. V1 used in
JavaGrande 00, triaged
out of initial JSR166

Stealers use compareAndSet
of this slot from non-null
to null to privatize.

If queue was empty,
wake up others using
scalable event queue

15

Joining Tasks

+ Cannot just block worker W awaiting completion of stolen task X
+ Would reduce parallelism level, maybe starve computation

+ ForkJoinTask.join() interleaves two techniques, neither of which
always works well alone, but together likely more effective than
alternatives (such as native continuation support):

+ Helping: Find/run a task that would have been on W's deque if X
had not been stolen; i.e., find descendent and its tasks or stealer

+ Improves memory locality and reduces switching

)
O
()
O
°
()
=
/)]
o
/)]
O
0
)
°

+ Racy - e.g., can't find tasks if stealer is stalled
+ Requires artificial bounds to avoid search cycles
+ Compensating: Create/resume spare to run on W's behalf, block W
+ Spare can finish while W unblocks
+ Spare suspends when its deque empty and too many running

+ Racy - e.g., miss that spare becomes available

+ Can increase footprint and CPU load y

Speedups on 32way Sparc

2 Speedups

y 35

O

] 30

5 ‘B |deal

(0 i 25 @ Fib

0] %2 ¥ Micro

q 8 0 A Integ

()

] S 15 > MM

D) < LU
10 4 Jacobi

£ Sort

5

123456789111111111122222222223
012345678901234567890

Threads

Granularity Effects

|
14

12

10

Time (sec)

o N B » (o]

0 5 10 15 20 25 30 35 40 45
Threshold

Recursive Fibonacci(42) running on Niagara2
compute () {
if (n <= Threshold) seqgFib(n) ;
else invokeAll (new Fib(n-1), new Fib(n-2)); ...}

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
@
J

+ When do you bottom out parallel decomposition?
+ A common initial complaint
+ But usually an easy empirical decision
+ Very shallow sensitivity curves near optimal choices

+ And usually easy to automate — except for problems so small
that they shouldn't divide at all

18

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

Automating granularity for decomposition

+ Queue-length sensing for recursive tasks
+ Each thread should help ensure progress of (idle) thieves

+ Maintain pipeline with small constant number of tasks
available to steal in steady state, plus more on ramp
up/down

+ Constant value because holds for each thread
+ Best value in part reflects overhead so not entirely analytic
+ Similar to spin lock thresholds

@+ Currently use 3 plus #idleThreads:
If (getSurplusQueuedTaskCount() > 3) seq(...) else split(...)

+ Usually identical throughput to that with manual tuning
+ Can sometimes do a little better with more knowledge

+ For O(n) ops on arrays, generate #leafTasks proportional to
#threads (e.g., 8 * #threads)

19

Automating granularity for aggregation

+ Example: Graph traversal
+ visit() { if (mark) for each neighbor n, fork(new Visitor(n)); }
+ Usually too few instructions to spawn task per node
+ Batching based on queue sensing
+ Create tasks with node lists, not single nodes
+ Release (push) when list size exceeds threshold

+ Use batch sizes exponential in queue size (with max cap)

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

+ Small queue => a thread needs work, even if small batch
+ Cap protects against bad decisions during GC etc

+ Using min{128, 2%="*5>¢} gijves almost 8X speedup vs
unbatched in spanning tree algorithms

+ The exact values of constants don't matter a lot
+ This approximates (in reverse) the top-down rules
+ See ICPP 08 paper for details

20

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

Other Synchronization Support

+ Unstructured sync not strictly disallowed but not supported
+ If one thread blocked on 10, others may spin wasting CPU
+ If all threads blocked on 10, pool stalls

+ ForkJoinPool provides methods to compensate for blocked
tasks under external advisement

+ Basically the same compensation algorithm as in join()
+ helpQuiesce(): Execute tasks until there is no work to do
+ Relies on underlying quiescence detection
+ Similar to Herlihy & Shavit section 17.6 algorithm
+ Needed anyway for pool control
+ Fastest when applicable (e.g. graph traversal)

+ phaser.awaitAdvance(p): Similar to join, but triggered by phaser
barrier sync

+ Based on a variant of Sarkar et al Phasers (aka clocks)

21

Async Actions

+ Require finish() call to complete task
@+ Finish of last subtask invokes parent finish
+ Replaces explicit joins with explicit continuations
+ Eliminates need for helping/compensating
+ Adds per-task linkages — more space overhead
+ Adds atomic op for each completion — slower reductions
+ Base classes (not included) can prewire linkages and reductions

class Fib extends BinaryAsyncAction {
final int n; int result;
Fib(int n) { this.n = n; }
public void compute () {
if (n > T) linkAndForkSubtasks(new Fib(n-1), new Fib(n-2));
else { result = seqgFib(n); finish(), }
}
public void onFinish (BinaryAsyncAction x,
BinaryAsyncAction y) {
result = ((Fib)x) .result + ((Fib)y) .result;

}

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

Resource Management for Tasks

+ Each task is a new, usually short-lived, object
+ Each task not much more than a heap-allocated stack frame
+ Many millions of object creations per second
+ Must quickly forget them to enable GC
+ Guides many details of the algorithms
+ Coexist nicely with work-stealing parallel GC

+ Some pool management must be centralized

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

+ Signaling work, activating spares, etc, for a mostly-
unchanging pool of workers

+ Internal structures can encounter high contention

+ Needs scalable synchronization

23

Contention in Shared Data Structures

Mostly-Write Mostly-Read

)

'qd, + Most producer-consumer + Most Maps & Sets

o exchanges + Empirically, 85% Java

+ Especially queues Map calls read-only

g + Apply combinations of a small + Structure to maximize

o) set of ideas concurrent readability

3 + Use non-blocking sync + Without locking, readers

. via compareAndSet see legal (ideally,

7 (CAS) linearizable) values

: + Reduce point-wise #+ Often, using immutable
contention copy-on-write internals

+ Arrange that threads help + Apply write-contention

each other make techniques from there

progress

24

ConcurrentLinkedQueue

+ lllustrates mostly-write techniques

£1 3 Variant of Michael & Scott Queue (PODC 1996)
(]
o #+ Use retryable CAS (not lock)
+ CASes on different vars (head, tail) for put vs poll
5,;, + If CAS of tail from t to x on put fails, others try to help
o
% + By checking consistency during put or take
O 2: CAS tail
Q from t to x
0
ol CAS head Put x
from h to n;

return h.item

head tail

1: CAS t.next
from null to x

25

)
O
()
O
°
()
=
/)]
o
/)]
O
0
)
°

Enhanced Queues

Bug report: garbage retention in
ConcurrentLinkedQueue

+ Until an (unreferenced)
removed node is actually
GCed, its successors stay live

+ “floating” garbage

+ Fixing led to idea of slack
(Martin Buchholz):

+ Mark removed nodes so other
threads can detect staleness,
help unsplice and forget
successors

RFE: Allow callers to block if
empty, and block on a put
awaiting a take

4

L 4

4

That is, support extended form
of BlockingQueue

Extend Scott & Scherer Dual
Queues (DISC 2004)

Nodes may represent either
data or requests

LinkedTransferQueue uses
slack + blocking

Elegant ideas, messy code
interlacing them all

26

)
O
()
O
°
()
=
/)]
o
/)]
O
0
)
°

Performance Model Oddities

+ j.u.c code needs managed runtime/VM
+ Generational GC, memory model conformance, etc
+ But cope with nonuniform idiot savant performance
+ Examples of coding between the lines

+ Presize work-stealing queue array to be much bigger than
otherwise needed, to reduce cardmark contention

+ Convince JIT that signalWork (and others) ought to be
compiled (vs interpreted) to minimize wakeup lags

+ Compilation counters don't reflect Amdahl's law

+ Devise portable adaptive spins to reduce expensive
block/unblock

+ Work around javac adding casts for generics in identity-based
compareAndSet (useless, widens race window)

+ Help implement faster hotspot/openjdk6 orderedPut support

+ Evade checked exception rules to relay task exceptions
27

Usage patterns, idioms, and hacks

Example: Left-spines — reuse task node down and up

final class SumSquares extends RecursiveAction ({
final double[] array; final int lo, hi; double result;
SumSquares next; // keeps track of right-hand-side tasks
SumSquares (double[] array, int lo, int hi, SumSquares next) ({
this.array = array; this.lo = lo; this.hi = hi; this.next = next;
}
protected void compute() {
int 1 = lo; int h = hi; SumSquares right = null;
while (h - 1 > 1 && getSurplusQueuedTaskCount() <= 3) {
int mid = (1 + h) >>> 1;
(right = new SumSquares (array, mid, h, right)) .fork()
h = mid;
}
double sum = atLeaf(l, h);
while (right !'= null && right.tryUnfork()) {
sum += right.atlLeaf(r.lo, r.hi); // Unstolen -- avoid virtual dispatch
right = right.next;
}
while (right != null) { // join remaining right-hand sides
right. join() ;
sum += right.result;
right = right.next;
}
result = sum;
}
private double atLeaf(int 1, int r) ({
double sum = 0;
for (int 1 = 1; 1 < h; ++i) // perform leftmost base step
sum += array[i] * arrayl[i];
return sum;

b} 28

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

)
O
()
O
°
()
=
/)]
o
/)]
O
0
)
°

VM Support Issues

+ Explicit memory fences and more complete atomics
+ Fences API, proposed but unloved
+ Tail-recursion
+ Needed internally to loopify recursion that entails callbacks
+ Boxing
+ Must avoid arrays of boxed elements
+ Guided inlining / macro expansion ?
+ Avoid megamorphic compute methods at leaf calls
+ Native Continuations?
+ Not clear they'd ever be better/faster than alternatives
+ VM internals
+ Reducing GC-based contention (e.g., on cardmarks)
+ Counters cannot guide compilation of sequential bottlenecks

+ Allowing idle threads help with GC (maybe via Thread.yieggl)

)
O
()
O
°
()
=
/)]
o
/)]
O
0
)
°

Processor/Platform Support Issues

+ Fast, simple fences for fast, simple ownership transfer
+ Needed in basic work-stealing operations
+ Fast enough not to need to avoid on recent X86 and Sparc
+ Generating fast code on non-TSO too hard for JIT?
+ Would sometimes need heavy escape analysis
+ More cache-aware dynamic thread-to-core/processor mappings
+ Balancing sharing/pollution within, vs contention between
+ Most non-HPC applications cannot statically determine
+ Someday: integration with GPUs and SIMD
+ Use for some operations on aggregates
+ Someday: Portable simple low-level transactions
+ Multiple-location LL/SC or minor variants
+ Continuing needs for java.util.concurrent:

+ Lower overhead threads, blocking/unblocking, time/timing;0

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
@
J

Libraries and Language Evolution

+ Automate parallel recursive divide and conquer across combined
operations on aggregates

class Student { String name; int gradYear; double gpa; }
ParallelArray<Student> students = ParallelArray.create(...);

double highestGpa = students.withFilter (graduatesThisYear)
.withMapping (selectGpa)
.max () ;

+ Too ugly without syntax support for closures

Ops.Predicate<Student> graduatesThisYear =
new Ops.Predicate<Student> () ({
public boolean op(Student s) {
return s.gradYear == THIS YEAR; } };

31

Current Status

+ Snapshots available in package jsr166y at:
http://gee.cs.oswego.edu/dl/concurrency-interest/

+ Seems to have a few hundred early users

+ Used by Fortress, Clojure, Scala, etc runtimes

+ Used by other optional packages in Java, Groovy, etc
+ Ongoing work

+ Simplifying APIs based on user experience

+ Mainly, removing some methods

)
O
()
O
°
()
=
/)]
o
/)]
O
0
)
°

+ Improving resilience to abuse (e.g., blocking on 10)
+ JDK release preparation
+ More testing, reviews, spec clarifications, tutorials, etc
+ Under consideration

+ Replace FJP async mode with event/actor-friendly class(es)

32

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

Postscript: Developing Libraries

+ APl design is a social process

+ Single visions are good, those that pass review are better
+ Specification and documentation require broad review

+ Even so, by far most submitted j.u.c bugs are spec bugs
+ Release engineering requires perfectionism

+ Lots of QA: tests, reviews. Still not enough
+ Standardization required for widespread use

+ JCP both a technical and political body
+ Need tutorials etc written at many different levels

+ Users won't read academic papers to find out how/why to use

+ Creating new components leads to new developer problems

+ Example: New bug patterns for findBugs

33

34

(Extra slides follow)

5@@.Oom3w0.m0.wmo\\uou.n_.£

Consistency

+ Processors do not intrinsically guarantee much about memory
access orderings

+ Neither do most compiler optimizations
+ Except for classic data and control dependencies
+ Not a bug

+ Globally ordering all program accesses can eliminate
parallelism and optimization — unhappy programmers

+ Need memory model to specify guarantees and how to get them
when you need them

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

+ Initial Java Memory Model broken

+ JSR133 overhauled specs but still needs some work

35

Language-Based Memory Models

+ Distinguish
+ sync accesses (locks, volatiles, atomics) vs
+ normal accesses (reads, writes)
+ Require strong ordering properties among sync
+ Usually “strong” means Sequentially Consistent
+ Allow as-if-sequential reorderings among normal
+ Usually means: obey seq data/control dependencies

+ Restrict reorderings between sync vs normal

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

+ Many rule choices, few “obviously” right or intuitive
+ And not tied to ownership semantics or separation logic
+ Special rules for cases like final fields

+ Specs based on only two flavors of access not enough

36

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

Mapping Memory Models

+ Enforce language rules in hardware & optimizers

+ May require expensive CPU fences, atomic ops
+ Often cheaper for structured ownership vs locks

+ A consideration in devising concurrent algorithms

+ But effects are only conditionally correct

+ Example: cheaper store-fence if never modify after publish

+ Difficult specs: must say what happens if not used correctly
+ Poor language support for special-mode accesses

+ Requires intrinsics operating on addresses (not values)

+ Alternatively, source-level control over fences

+ Not very usable in Java

+ Still, | use them a lot

+ Better language design still a research problem

37

Consistency Issues are Inescapable

+ Occur in remote message passing
+ Memory model mapping to distributed platforms expensive
+ Many groups don't need strong consistency
+ But encounter anomalies

+ Example (“IRIW”): x,y initially 0

Node A: send x = 1; // (multicast send)

Node B: send y = 1;
Node C: receive x; receive y; // see x=1, y=0

)
e,
)
o)
J
0
=
0
o)
0]
0)
0
0
J

Node D: receive y; receive x; // see y=1, x=0

+ Full avoidance as expensive as full MM mapping —
atomic multicast, distributed transactions

+ Moreso when must tolerate remote failure
+ Occur in local messaging: Processes, Isolates, ...

+ Usually rely on implicit OS-level consistency model

38

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

