

Optimizing Higher-Order
Functions in Scala

Iulian Dragos
EPFL

Outline

 A quick tour of Scala
 Generalities
 Extension through libraries

 Closure translation in Scala
 Cost

 Optimizations in the Scala compiler

Introduction

 Scala is a statically-typed language
 Brings together object-oriented and functional

programming
 Seamless interoperability with Java
 Extensible: grow the language through libraries

 for-loops are provided through a library class, BigInt
indistinguishable from the primitive type Int

 Problem: familiar looking code may hide
unexpected costs

Scala

 A statically-typed language
 object oriented

 has classes, traits (interfaces), objects
 functional

 has higher order functions, pattern matching, parameterized
types (generics) and virtual types

 compiles to Java bytecode
 can run on unmodified JVMs, can use java libraries

Extensibility

 Syntactic sugar
 infix methods:

 xs map println ==> xs.map(println)

 for comprehensions:
 for (i <- xs) println(x)
 ==> xs.foreach(x => println(x))

 Implicit conversions
 adapt types through user-defined conversions

 implicit intWrapper(x: Int) =
 new RichInt(x)
42.toHex ==> intWrapper(42).toHex

For loops

 class Range(val start: Int, val end: Int) extends Seq[Int] {
 override def foreach(f: Int => Unit) = //..
 //..
 }

 for (i <- 1 until 10) print(i)

 (new RichInt(1)).until(10).foreach({ i: Int => print(i) })

 for-loops are library code

users can write their own looping constructs

there is a (hidden) runtime cost

Closure conversion

 Functions are values (therefore objects)
 Translated to anonymous classes

 Implement a FunctionN trait, where N is the arity
 The captured environment is saved as fields, initialized on

construction

 trait Function1[R, A] {
 def apply(x: A): R
 }

final class anonfun3 extends
 Function1[Unit, Int] {

 def apply(i: Int) = print(Int.box(i))
 def apply(x1: Object): Object = {
 apply(scala.Int.unbox(x1))
 scala.runtime.BoxedUnit.UNIT
 }
}

Closure conversion

 Captured variables are turned into fields of closure
classes
 Mutable fields are wrapped by reference cells

 def sum(xs: List[Int], bound: Int): Int = {
 var sum = 0
 for (i <- 1 until xs.length)
 if (xs(i) > bound) sum += xs(i)
 sum
 }
 def sum1(xs$1: List, bound$1: Int): Int = {
 var sum$1: IntRef = new IntRef(0);
 Predef.intWrapper(1).until(xs$1.length).foreach({
 (new anonfun$1(this, xs$1, bound$1, sum$1): Function1)
 });
 sum$1.elem
 };

Closure conversion
final class anonfun$1 extends Object with Function1 with ScalaObject {
 def this(outer: test.Main, xs: List, bound: Int, sum: IntRef) = {
 this.outer = outer; this.xs = xs
 this.bound1 = bound; this.sum = sum
 };

 final def apply(i: Int): Unit =
 if (Int.unbox(xs.apply(i)) > bound)
 sum.elem = elem + Int.unbox(xs.apply(i));

 final <bridge> def apply(x$1: Object): Object = {
 apply(Int.unbox(x$1));
 BoxedUnit.UNIT
 };

 private val outer: test.Main = _;
 private val xs: List = _;
 private val bound: Int = _;
 private val sum: scala.runtime.IntRef = _
}

Closure conversion

 Cost that should be eliminated in known contexts:
 indirection (bridge methods, boxing/unboxing)
 object allocation (closure objects)
 class generation for anonymous functions

Problem

 Closures should be optimized:
 Class explosion leading to long load times
 Primitive values are boxed
 Many short-lived objects

 The JVM optimizer is not enough
 Can the Scala compiler do better?

 Not having the whole program at hand

Optimizations in the Scala
compiler

 Uses a stack-based, CFG based intermediate
representation (ICode)
 Java bytecode can be parsed back to ICode

 Phases
 Inlining
 Closure elimination
 Dead-code elimination
 Peephole optimizer

ICode reader

 Need to analyze/inline library code
 But shouldn't rule out separate compilation

 Java bytecode is parsed to ICode
 Has to resolve symbols
 Has to type locals (sometimes needs splitting)

Inlining

 Uses TFA for deriving the most precise types at
local variables and stack positions
 Propagates types from allocation sites
 Method calls are resolved when the type of the receiver

is determined to be final
 It is more precise than CHA and RTA

 Method calls to FunctionN methods can't be resolved by RTA
pruning

 Methods are inlined repeatedly
 Higher-order functions and closure applications are

preferred

Closure elimination

 Determines what values on the stack, or in object
fields are copies of a local variable
 Also tracks special values like this, or primitive

constants
 Simple heap model: objects are records, populated by

known constructors
 Replaces field accesses by local variables whenever

possible
 Often closures' environments become dead

 And optimizes unnecessary boxing as well!

DCE

 Dead-code elimination cleans after the previous
phases
 Removes closure object allocation
 Suppresses code generation for dead closure classes
 Uses a simple mark & sweep algorithm, starting with

'useful' instructions

Results

Test Case Running time (ms) Optimized (ms) Speed up
assert 104.8 67.4 36%

assert(dis) 79.6 44.4 44%
matrix 75.4 40.4 46%

 Each test was run once to warm up the VM
 Each measurement is an average over 5 runs

Future work

 Improve compilation times
 Inlining repeatedly requires solving the data-flow

problem for very similar flow-graphs
 Idea: reuse and combine solutions for the caller and callee.

 Improve precision
 pureness analysis

