Optimizing Higher-Order
Functions in Scala

lulian Dragos
EPFL

A quick tour of Scala

Generalities

Extension through libraries
Closure translation in Scala
Cost

Optimizations in the Scala compiler

Scala 1s a statically-typed language

Brings together object-oriented and functional
programming

Seamless interoperability with Java

Extensible: grow the language through libraries

for-loops are provided through a library class, BigInt
indistinguishable from the primitive type Int

Problem: familiar looking code may hide
unexpected costs

A statically-typed language

object oriented
has classes, traits (interfaces), objects
functional

has higher order functions, pattern matching, parameterized
types (generics) and virtual types

compiles to Java bytecode

can run on unmodified JVMs, can use java libraries

Syntactic sugar

infix methods:
XS map println ==> xs.map (println)
for comprehensions:

for (1 <- xs) println (x)
==> xs.foreach(x => println(x))

Implicit conversions

adapt types through user-defined conversions

implicit intWrapper (x: Int) =
new RichInt (x)
472 .toHex ==> intWrapper (42) .toHex

for (i <- 1 until 10) print (i)
(new RichInt (1)) .until (10).foreach({ i: Int => print (i) 1})

class Range(val start: Int, wval end: Int) extends Seg[Int] {
override def foreach(f: Int => Unit) = //..
// ..

}

for-loops are library code
s users can write their own looping constructs

s there 1s a (hidden) runtime cost

Functions are values (therefore objects)

Translated to anonymous classes

Implement a FunctionN trait, where N i1s the arity

The captured environment 1s saved as fields, 1nitialized on
construction

trait Functionl[R, A] { final class anonfun3 ;xtez@s lumit. ot
def apply(x: A): R aHeRLen nit, Int]

J def apply(i: Int) = print (Int.box (i))
def apply(xl: Object): Object = {
apply(scala.Int.unbox (x1))
scala.runtime.BoxedUnit.UNIT

}
}

def sum(xs: List[Int], bound: Int): Int = {
var sum = 0

for (1 <- 1 until xs.length)
1f (xs(1) > bound) sum += xs(1i)
sum

}

def suml(xs$1l: List, bound$l: Int): Int = {
var sum$l: IntRef = new IntRef(0);
Predef.intWrapper(1l).until(xs$1.length).foreach({
(new anonfun$l(this, xs$1, boundl, sum1): Functionl)
3);
sum$l.elem

b

Captured variables are turned into fields of closure
classes

Mutable fields are wrapped by reference cells

Closure conversion

final class anonfun$l extends Object with Functionl with ScalaObject {
def thisCouter: test.Main, xs: List, bound: Int, sum: IntRef) = {
this.outer = outer; this.xs = xs
this.boundl = bound; this.sum = sum

b

final def apply(i: Int): Unit =
1f (Int.unbox(xs.apply(i)) > bound)
sum.elem = elem + Int.unbox(xs.apply(i));

final <bridge> def apply(x$1: Object): Object = {
apply(Int.unbox(x$1));
BoxedUnit.UNIT

+s

private val outer: test.Main = _;

private val xs: List = _;

private val bound: Int = _;

private val sum: scala.runtime.IntRef = _

Cost that should be eliminated in known contexts:

indirection (bridge methods, boxing/unboxing)
object allocation (closure objects)

class generation for anonymous functions

Closures should be optimized:

Class explosion leading to long load times
Primitive values are boxed

Many short-lived objects
The JVM optimizer 1s not enough

Can the Scala compiler do better?

Not having the whole program at hand

Optimizations in the Scala
compiler
= Uses a stack-based, CFG based intermediate
representation (ICode)
= Java bytecode can be parsed back to ICode
= Phases
= Inlining
= Closure elimination

= Dead-code elimination

= Peephole optimizer

Need to analyze/inline library code
But shouldn't rule out separate compilation
Java bytecode 1s parsed to ICode

Has to resolve symbols

Has to type locals (sometimes needs splitting)

Uses TFA for deriving the most precise types at
local variables and stack positions

Propagates types from allocation sites

Method calls are resolved when the type of the receiver
1s determined to be final

It 1s more precise than CHA and RTA

Method calls to FunctionN methods can't be resolved by RTA
pruning

Methods are inlined repeatedly

Higher-order functions and closure applications are
preferred

Determines what values on the stack, or in object
fields are copies of a local variable

Also tracks special values like this, or primitive
constants

Simple heap model: objects are records, populated by
known constructors

Replaces field accesses by local variables whenever
possible

Often closures' environments become dead

And optimizes unnecessary boxing as well!

Dead-code elimination cleans after the previous
phases

Removes closure object allocation
Suppresses code generation for dead closure classes

Uses a simple mark & sweep algorithm, starting with
'useful' mstructions

Eac!
Eac]

Test Case Running time (ms) Optimized (ms) Speed up

assert 104.8 67.4 36%
assert(dis) 79.6 44 .4 44%
matrix 75.4 40.4 46%

1 test was run once to warm up the VM

1 measurement 1S an average over S5 runs

Improve compilation times

Inlining repeatedly requires solving the data-flow
problem for very similar flow-graphs

Idea: reuse and combine solutions for the caller and callee.

Improve precision

pureness analysis

