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or: Just how General
Purpose is it?
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The Prehistory of Java
What shaped my thinking
Something of a geek
autobiography
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First Learned
FOCAL

build stuff fast!
PDP-8 assembler

build fast stuff!
for the day :-)
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Eventually
Fortran, Cobol, Basic, CDC
assembler, ...

jobs
Multics Pascal compiler
VAX Cobol (never shipped as product)

Pascal, Simula, Lisp, Algol,
IBM assembler, ...

when I finally went to school
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Designing my first scripting
language: YORKMT

Started life as a magtape copy program
Feature creep added data correction,
imaging, device handling, ...
Too many changes!
Experience with TECO suggested
adding scripting.  Success!
Users did unexpected things: instrument
calibration, diagnostics, ...
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Lessons along the way
Threading is cool

Hydra, Cm*, SMP BSD, Hibbards Algol68
ANDF is easy (!)

PERQ->VAX code migration
(the PhD thesis I should have written)

The power of trustworthy pointers
Multics, Hydra, Cm*, Pascal, Mesa

Optimizers can do surprising things
BLISS, MUMBLE (the other thesis I should have
written)

Code-as-algebra is awesome!
PhD thesis, ACE
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Unix Emacs
Reinforced YORKMT
lessons

Power of scripting
People do the damndest things

(everything gets stretched to its
limits)

Added
The power of the community
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NeWS
Networked Extensible Window System

(predated X11)
A window system based on scripting....
PostScript (!!)
More insanely unusual users

(never kid yourself into believing you know what
will be done with what you've built)

"Technical" success, but two nagging issues:
Scripting performance

(cope with user surprise scale)
Security
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Trivia Question:
What was Java called,
before it was called "oak"?
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GreenTalk
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Perceptions, circa 1990
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This dichotomy always
bugged me
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Perception of Academia
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This perception always
bugged me
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A Big (but quiet) Goal:
How close could I get to a
"scripting" feel, without
giving up too much?
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A subversive compromise
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A Wolf in Sheeps Clothing
C syntax to make developers
comfortable
Lisp/Smalltalk/Mesa/Simula/
... to get the job done
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The original concept
Was all about building
networks of things,
orchestrated by a scripting
language
(Unix shells, AppleScript, ...)

but I was real nervous
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Commercial software priority
list, 1990

Compatibility (V2V)
Performance
Portability
Reliability
Networking
Multithreading
Security
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Consumer Electronics priority list
Security (safety)
Networking (connectivity)
Portability (cost: CPU du jour)
Reliability
Performance
Multithreading
Compatibility (rewrite for every
product)
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Shake and Stir
Security
Reliability
Networking
Portability
Compatibility
Multithreading
Performance
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BUT
Performance that sucks
Sucks
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Design space is gravitationally
lumpy

"Lisp is a black hole.  If you try to
design something like Lisp, it
gets sucked in and becomes
Lisp"

Guy Steele, hallway conversation,
1980ish

But orbital dynamics are chaotic

Byte coding is another black hole
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ANDF
Architecturally Neutral Distribution
Format
One of the Holy Grails of the early 1990s
Got bogged down by politics and
complexity
Tended to be persistent forms of ASTs
Which said too much about how
compilers were build
Food Fight
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Virtual Machines to the Rescue
PERQ experience said
performance could be good
verifier invented to enforce
security issues

imposes restrictions on control&data
flow
that are also useful for compilers

Says "just enough"
Abstracts-away AST issues
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The Big Restriction:
pointer/object integrity

ie. no fraud
Some languages depend on
fraud:

C/C++/Objective C
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The Other Big Restriction
Reactionary method calls

Simple simula-esque object
model
The more complex object models
didn't seem to be worth their
weight

A building block
Tricks with interfaces
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Why a stack machine?
(why not?)
No preconceived register
architecture
Compact
"free" live/dead analysis
reverse polish encoding of
AST
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Control Flow
Goto statement

Caused flow analysis problems
Poof!  Dead!

JSR/RET
oops!
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Primitive Types
They're all about
performance
Design Goal:
a=b+c
in one instruction
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Java performance
The myth:

it's interpreted, therefore slow
The truth:

it's highly optimized
dynamic metrics
generally beats C/C++

-2% LINPACK, +4% SciMark
often beats Fortran (matricies are the issue)
GC is a lot faster than malloc/free

Dynamic compilation beats static
No need to be afraid of methods!

who needs opcodes?
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Thanks!
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