
How the
JVM spec
came to
be

James
Gosling

Page 1 of 33

or: Just how General
Purpose is it?

Page 2 of 33

The Prehistory of Java
What shaped my thinking
Something of a geek
autobiography

Page 3 of 33

First Learned
FOCAL

build stuff fast!
PDP-8 assembler

build fast stuff!
for the day :-)

Page 4 of 33

Eventually
Fortran, Cobol, Basic, CDC
assembler, ...

jobs
Multics Pascal compiler
VAX Cobol (never shipped as product)

Pascal, Simula, Lisp, Algol,
IBM assembler, ...

when I finally went to school

Page 5 of 33

Designing my first scripting
language: YORKMT

Started life as a magtape copy program
Feature creep added data correction,
imaging, device handling, ...
Too many changes!
Experience with TECO suggested
adding scripting. Success!
Users did unexpected things: instrument
calibration, diagnostics, ...

Page 6 of 33

Lessons along the way
Threading is cool

Hydra, Cm*, SMP BSD, Hibbards Algol68
ANDF is easy (!)

PERQ->VAX code migration
(the PhD thesis I should have written)

The power of trustworthy pointers
Multics, Hydra, Cm*, Pascal, Mesa

Optimizers can do surprising things
BLISS, MUMBLE (the other thesis I should have
written)

Code-as-algebra is awesome!
PhD thesis, ACE

Page 7 of 33

Unix Emacs
Reinforced YORKMT
lessons

Power of scripting
People do the damndest things

(everything gets stretched to its
limits)

Added
The power of the community

Page 8 of 33

NeWS
Networked Extensible Window System

(predated X11)
A window system based on scripting....
PostScript (!!)
More insanely unusual users

(never kid yourself into believing you know what
will be done with what you've built)

"Technical" success, but two nagging issues:
Scripting performance

(cope with user surprise scale)
Security

Page 9 of 33

Trivia Question:
What was Java called,
before it was called "oak"?

Page 10 of 33

GreenTalk

Page 11 of 33

Perceptions, circa 1990

Page 12 of 33

This dichotomy always
bugged me

Page 13 of 33

Perception of Academia

Page 14 of 33

This perception always
bugged me

Page 15 of 33

A Big (but quiet) Goal:
How close could I get to a
"scripting" feel, without
giving up too much?

Page 16 of 33

A subversive compromise

Page 17 of 33

A Wolf in Sheeps Clothing
C syntax to make developers
comfortable
Lisp/Smalltalk/Mesa/Simula/
... to get the job done

Page 18 of 33

The original concept
Was all about building
networks of things,
orchestrated by a scripting
language
(Unix shells, AppleScript, ...)

but I was real nervous

Page 19 of 33

Commercial software priority
list, 1990

Compatibility (V2V)
Performance
Portability
Reliability
Networking
Multithreading
Security

Page 20 of 33

Consumer Electronics priority list
Security (safety)
Networking (connectivity)
Portability (cost: CPU du jour)
Reliability
Performance
Multithreading
Compatibility (rewrite for every
product)

Page 21 of 33

Shake and Stir
Security
Reliability
Networking
Portability
Compatibility
Multithreading
Performance

Page 22 of 33

BUT
Performance that sucks
Sucks

Page 23 of 33

Design space is gravitationally
lumpy

"Lisp is a black hole. If you try to
design something like Lisp, it
gets sucked in and becomes
Lisp"

Guy Steele, hallway conversation,
1980ish

But orbital dynamics are chaotic

Byte coding is another black hole

Page 24 of 33

ANDF
Architecturally Neutral Distribution
Format
One of the Holy Grails of the early 1990s
Got bogged down by politics and
complexity
Tended to be persistent forms of ASTs
Which said too much about how
compilers were build
Food Fight

Page 25 of 33

Virtual Machines to the Rescue
PERQ experience said
performance could be good
verifier invented to enforce
security issues

imposes restrictions on control&data
flow
that are also useful for compilers

Says "just enough"
Abstracts-away AST issues

Page 26 of 33

The Big Restriction:
pointer/object integrity

ie. no fraud
Some languages depend on
fraud:

C/C++/Objective C

Page 27 of 33

The Other Big Restriction
Reactionary method calls

Simple simula-esque object
model
The more complex object models
didn't seem to be worth their
weight

A building block
Tricks with interfaces

Page 28 of 33

Why a stack machine?
(why not?)
No preconceived register
architecture
Compact
"free" live/dead analysis
reverse polish encoding of
AST

Page 29 of 33

Control Flow
Goto statement

Caused flow analysis problems
Poof! Dead!

JSR/RET
oops!

Page 30 of 33

Primitive Types
They're all about
performance
Design Goal:
a=b+c
in one instruction

Page 31 of 33

Java performance
The myth:

it's interpreted, therefore slow
The truth:

it's highly optimized
dynamic metrics
generally beats C/C++

-2% LINPACK, +4% SciMark
often beats Fortran (matricies are the issue)
GC is a lot faster than malloc/free

Dynamic compilation beats static
No need to be afraid of methods!

who needs opcodes?

Page 32 of 33

Thanks!

Page 33 of 33

