O Clojure

A Dynamic Programming Language for the VM

Rich Hickey

Clojure Fundamentals

® 3 years in development, released 10/2007
® A new Lisp, not Common Lisp or Scheme
® Functional
® emphasis on immutability
® Supporting Concurrency
® |anguage-level coordination of state
® Designed for the VM
® exposes and embraces platform ﬂ

Clojure is a Lisp
Dynamically typed, dynamically compiled

Interactive - REPL

Load/change code in running program
Code as data - Reader

Small core

Sequences

Syntactic abstraction - macros

Not Object-oriented

Atomic Data lypes

Arbitrary precision integers - 12345678987654
Doubles 1.234 , BigDecimals 1.234u

Ratios - 22/7

Strings - “fred” , Characters - \a \b \c
Symbols - fred ethel , Ke)'WOI"dS - :fred :ethel
Booleans - true false , Null - ni1

Regex patterns #“a*b”

Data Structures

® |ists - singly linked, grow at front

e (12345), (fred ethel lucy), (list 1 2 3)

® Vectors - indexed access, grow at end

e [12 3 45], [fred ethel lucy]

® Maps - key/value associations

e {:al, :b 2, :c 3}, {1 “ethel” 2 “fred”}
® Sets #{fred ethel lucy?

® Everything Nests

@,

Syntax

® You've just seen it
® Data structures are the code
® Not text-based syntax

® Syntax is in the interpretation of data
structures

® Things that would be declarations, control
structures, function calls, operators, are all
just lists with op at front

® Everything is an expression ‘j

Norvig’s Spelling Corrector in Python
http://norvig.com/spell-correct.html

def words(text): return re.findall('[a-z]+"', text.lower())

def train(features):
model = collections.defaultdict(lambda: 1)
for f in features:
model[f] += 1
return model

NWORDS = train(words(file('big.txt"').read()))
alphabet = "abcdefghijklmnopgrstuvwxyz'

def editsl(word):
n = len(word)
return set([word[0@:1]+word[1+1:] for 1 in range(n)] +
[word[0@:1]+word[1+1]+word[1]+word[1+2:] for 1 in range(n-1)] +
[word[@:1]+c+word[1+1:] for 1 in range(n) for c in alphabet] +
[word[@:1]+c+word[1:] for 1 1n range(n+l) for c 1in alphabet])

def known_editsZ2(word):
return set(e2 for el in editsl(word) for eZ2 in editsl(el) if eZ2 in NWORDS)

def known(words): return set(w for w in words if w in NWORDS)
def correct(word):

candidates = known([word]) or known(editsl(word)) or known_editsZ2(word) or [word]
return max(candidates, key=lambda w: NWORDS[w])

; Norvig’s Spelling Corrector in Clojure
; http://en.wikibooks.org/wiki/Clojure_Programming#Examples

(defn words [text] (re-seq #"[a-z]+" (.toLowerCase text)))

(defn train [features]
(reduce (fn [model f] (assoc model f (inc (get model f 1))))

{} features))
(def *nwords* (train (words (slurp "big.txt"))))

(defn editsl [word]
(let [alphabet "abcdefghijklmnopgrstuvwxyz", n (count word)]

(distinct (concat
(for [1 (range n)] (str (subs word @ 1) (subs word (inc 1))))
(for [1 (range (dec n))]
(str (subs word @ 1) (nth word (inc 1)) (nth word 1) (subs word (+ 2 1))))
(for [1 (range n) c alphabet] (str (subs word @ 1) c (subs word (inc 1))))

(for [1 (range (inc n)) c alphabet] (str (subs word @ 1) c (subs word 1)))))))

(defn known [words nwords] (for [w words :when (nwords w)] w))

(defn known-editsZ [word nwords]
(for [el (editsl word) e2 (editsl el) :when (nwords e2)] e2))

(defn correct [word nwords]

(let [candidates (or (known [word] nwords) (known (editsl word) nwords)
(known-editsZ2 word nwords) [word])] ‘

(apply max-key #(get nwords % 1) candidates)))

http://en.wikibooks.org/wiki/Clojure_Programming#
http://en.wikibooks.org/wiki/Clojure_Programming#

Java Interop
Math/PI

3.141592653589793

(.. System getProperties (get "java.version™))
"1.5.0_13"

(new java.util.Date)
Thu Jun @05 12:37:32 EDT 2008

(doto (JFrame.) (add (JLabel. "Hello World")) pack show)

;expands 1nto:
(let [x (JFrame.)]
(do (. x (add (JLabel. "Hello World")))
(. x pack)
(. x show))

@ D,

Clojure is Functional

® All data structures immutable
® Core library functions have no side effects
® Easier to reason about, test
® Essential for concurrency
® Functional by convention insufficient
® |et-bound locals are immutable
® |oop/recur functional looping construct

® Higher-order functions

Sequences

(drop 2 [1 2 3 45]) -> (3 45)

(take 9 (cycle [1 2 3 4]))
> ((123412341)

d:e] [12 3 45])

(1interleave [:a :b :c
3 :d4 :e5)

-> (a1l :b 2 :c

(partition 3 [1 234567 8 9])
> ((123) (4506) (7 89)

(map vector [:a :b :c e
d

34 5])
—>([al][b2][c3][e 5

[1 2
4] L:e 5D
Capply str (interpose \, "asdf"))

_> "a,s,d,_Fll

(reduce + (range 100)) -> 4950

Maps and Sets

(def m {:a 1 :b 2 :c 3})
(m :b) -> 2 ;also (:b m)
(keys m) -> (:a :b :c)

(assocm :d 4 :c 42) -> {:d 4,

cal, :b 2, :c 42}

(merge-with + m {:a 2 :b 3}) -> {:a 3, :b 5,

(union #{:a0 b :c} #{:c :d :e})
(join #{{:a0 1 :b 2 :c 3} {:a 1
#{{:a0 1 :b 2 :e 5} {:0 1

, b 21, :c 42}

-> #{:d :a

1 :c 42}}%
1 :d 4}})

b

cc 3}

.C

e}

Persistent Data Structures

® |mmutable, + old version of the collection is still
available after 'changes’

® (Collection maintains its performance guarantees
® Therefore new versions are not full copies

® Structural sharing - thread safe, iteration safe

® All Clojure data structures are persistent

® Hash map/set and vector based upon array
mapped hash tries (Bagwell)

® Practical - much faster than O(logN))

Bit-partitioned hash tries

Concurrency

® Conventional way:
® Direct references to mutable objects
® |ock and worry (manual/convention)
® Clojure way:

® Indirect references to immutable persistent
data structures (inspired by SMLs ref)

® Concurrency semantics for references
® Automatic/enforced

® No locks in user code!

Typical OO - Direct
references to Mutable Objects

e Unifies identity and value
* Anything can change at any time
 Consistency is a user problem

®

Clojure - Indirect references
to Immutable Objects

* Separates identity and value
* Obtaining value requires explicit
dereference
* Values can never change

* Never an inconsistent value)

Persistent ‘Edit’

"fred"
"ethel"
42
17
6

ola|lo|o|w

o— +‘ o @foo —>

|

Structural sharing

"lucy”
"ethel"
42
17
6

New value is function of old
Shares immutable structure
Doesn’t impede readers
Not impeded by readers

o|a|o|o|sb----

Atomic Update

f00 :a "fred"
b "ethel"
o —>> :C 42
.d 17
e 6
-—4—.._

oo i Structural sharing
\ P
b "ethel"
. .C 42
* Always coordinated d 17
‘e 6

 Multiple semantics
e Next dereference sees new value
e Consumers of values unaffected

Clojure References

® The only things that mutate are references
themselves, in a controlled way

® 3 types of mutable references, with different
semantics:

® Refs - Share synchronous coordinated
changes between threads

® Agents - Share asynchronous autonomous
changes between threads

® Vars - Isolate changes within threads g)

Refs and Transactions

® Software transactional memory system (STM)
® Refs can only be changed within a transaction
® All changes are Atomic, Consistent and Isolated

® Every change to Refs made within a
transaction occurs or none do

® No transaction sees the effects of any other
transaction while it is running

® [ransactions are speculative

® Will be retried automatically if conflict
® User must avoid side-effects! '

The Clojure STM

Surround code with (dosync ...)
Uses Multiversion Concurrency Control (MVCC)

All reads of Refs will see a consistent snapshot of
the 'Ref world' as of the starting point of the
transaction, + any changes it has made.

All changes made to Refs during a transaction
will appear to occur at a single point in the
timeline.

Readers never impede writers/readers, writers
never impede readers, supports commute)

Refs in action

(def foo (ref {:a "fred" :b "ethel" :c 42 :d 17 :e 6}))
@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

(assoc @foo :a "lucy")
-> {:d 17, :a "lucy", :b "ethel", :c 42, :e 06}

@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

(commute foo assoc :a "lucy")
-> IllegalStateException: No transaction running

(dosync (commute foo assoc :a "lucy"))
@foo -> {:d 17, :a "lucy", :b "ethel", :c 42, :e 6}

@,

Agents

Manage independent state

State changes through actions, which are
ordinary functions (state=>new-state)

Actions are dispatched using send or send-off,
which return immediately

Actions occur asynchronously on thread-pool
threads

Only one action per agent happens at a time ﬂ

Agents

Agent state always accessible, via deref/@), but
may not reflect all actions

Can coordinate with actions using await

Any dispatches made during an action are held
until after the state of the agent has changed

Agents coordinate with transactions - any
dispatches made during a transaction are held
until it commits

Agents are not Actors (Erlang/Scala) ﬂ

Agents in Action

(def foo (agent {:a "fred" :b "ethel" :c 42 :d 17 :e 6}))
@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}

(send foo assoc :a "lucy")

@foo -> {:d 17, :a "fred", :b "ethel", :c 42, :e 6}
(await foo)

@foo -> {:d 17, :a "lucy", :b "ethel", :c 42, :e 6}

Java Integration

Clojure strings are Java Strings, numbers are
Numbers, collections implement Collection,
fns implement Callable and Runnable etc.

Core abstractions, like seq, are Java interfaces

Clojure seq library works on Java lterables,
Strings and arrays.

Implement and extend Java interfaces and
classes

Primitive arithmetic support equals Java’s
speed.

>

Implementation - Functions

® Dynamically compiles to bytecode in memory
® Uses ASM
® No AOT compilation at present
® Every function is new Class
® |mplements IFn interface
® Set of invoke methods, overloaded on arity

® All signatures take/return Objects

® Variadics based on sequences)

Implementation - Calls

® Function calls are straight Java method calls
® No alternate type system, thunks etc
® No special extra args
® (Calls to Java are either direct or via reflection
® No wrappers, caches or dynamic thunks
® Type hints + inference allow direct calls

® Very few hints needed to avoid reflection

® compiler flag can generate warnings)

Implementation - Primitives

® | ocals can be primitives, arrays of primitives
® Math calls inlined to primitive-arg static methods
® HotSpot finishes inlining to primitive math

® Result is same speed as Java

(defn foo [n] (defn foo2 [n]
(loop [1 1] (let [n (int n)]
(if (< 1 n) (loop [1 (int @)]
(recur (inc 1)) (if (<1 n)
1)) (recur (inc 1))
1)))))

(time (foo 100000))

"Elapsed time: 1.428 msecs" (time (fooZ2 100000)) &

100000 "Elapsed time: 0.032 msecs” @&
100000 \ "~ 4

Implementation - STM

Not a lock-free spinning optimistic design
Uses locks, wait/notify to avoid churn
Deadlock detection + barging

One timestamp CAS is only global resource
No read tracking

Coarse-grained orientation

® Refs + persistent data structures

java.util.concurrent is still right tool for ‘j
caches/queues X

Pain Points

® No tail call optimization
® |mportant for some functional idioms

® Major point of criticism for choice of [VM
from functional circles

® Use Java’s boxed Numbers + own Ratio
® [nteger, Long, Biginteger etc
® Slow generic math, numbers on heap

® Would love tagged fixnums and/or standard
high performance boxed math lib ’

Conclusion
® Very happy with the [VM

® Good performance, facilities, tools, libraries
® Clojure fills a niche

® Dynamic + functional + VM
® | ots of interest in first | | months:

® 500+ user mailing list, 500+ messages/month

® |0,000+ SVN reads/month

® Active community ﬂ

Thanks for listening!

http://clojure.org

http://www.clojure.org
http://www.clojure.org

