
Scalify

Java -> Scala Source Translator
Target: 100% of Java 1.5
Status: 90% of Java 1.4

Ninety/Ninety rule may apply

http://github.com/paulp/scalify
(BSD-like do-what-you-want license)

http://github.com/paulp/scalify
http://github.com/paulp/scalify

Motivations
• Mixed Java/Scala not yet a smooth ride

• Interoperation with Java a many-edged sword

• Education for aspiring Scala programmers

• Lowering barriers to Scala adoption

• Experimenting with exciting and exotic translations:
eliminating mutable state, isolating effects, selectively
introducing laziness ... there are truckloads of research.

• Actual, less-reverse-engineered reason: fun

Relevance to You

• Yes, it’s called “Scalify” but don’t let the
name fool you

• Ambition is a fully generic frontend and
pluggable language-specific backends

• This is more likely to come to pass if
someone using another nutty language gets
involved before it’s too far along

Backend

• All you’ll have to do is implement one
function!

• “...in 27 parts.”

• Maybe more like 95 parts.

• def emit(cu: dom.CompilationUnit): String

• Much of the front end work done for us

• Support for refactoring, searching, compiler
warnings, etc. etc.

• Have to run inside OSGI

• ASTParser.createASTs produces one java
syntax tree per compilation unit

Eclipse JDT

AbstractTypeDeclaration Annotation AnnotationTypeDeclaration AnnotationTypeMemberDeclaration AnonymousClassDeclaration ArrayAccess ArrayCreation ArrayInitializer
ArrayType AssertStatement Assignment Block BlockComment BodyDeclaration BooleanLiteral BreakStatement CastExpression CatchClause CharacterLiteral

ClassInstanceCreation Comment CompilationUnit ConditionalExpression ConstructorInvocation ContinueStatement DoStatement EmptyStatement EnhancedForStatement
EnumConstantDeclaration EnumDeclaration Expression ExpressionStatement FieldAccess FieldDeclaration ForStatement IfStatement ImportDeclaration InfixExpression Initializer

InstanceofExpression Javadoc LabeledStatement LineComment MarkerAnnotation MemberRef MemberValuePair MethodDeclaration MethodInvocation MethodRef
MethodRefParameter Modifier Name NormalAnnotation NullLiteral NumberLiteral PackageDeclaration ParameterizedType ParenthesizedExpression PostfixExpression
PrefixExpression PrimitiveType QualifiedName QualifiedType ReturnStatement SimpleName SimpleType SingleMemberAnnotation SingleVariableDeclaration Statement

StringLiteral SuperConstructorInvocation SuperFieldAccess SuperMethodInvocation SwitchCase SwitchStatement SynchronizedStatement TagElement TextElement ThisExpression
ThrowStatement TryStatement Type TypeDeclaration TypeDeclarationStatement TypeLiteral TypeParameter VariableDeclaration VariableDeclarationExpression

VariableDeclarationFragment VariableDeclarationStatement WhileStatement WildcardType

ASTNode subclasses:

Eclipse is all Java 1.4, which means
 - no generics,

 - plenty of raw types
- both failures and missing values

typically denoted by null

This aggression will not stand!

Scala Pain Points
• Multiple constructors

• Varying variance semantics

• Results of assignment

• Namespaces

• Absence of unexceptional gotos (no break,
continue, or labeled statements)

• Intersection of inheritance and statics

• And many more!

Arbitrarily many independent
constructors

Any constructor can call any
available superconstructor

Early return is legal

One primary - auxiliaries must
call this(...) as first instruction

Only the primary can call
super

No returning from
constructors

Java Scala

Namespaces
Unfortunately the following is legal Java:

In Scala, there are only two namespaces (compared to Java’s four),
mutable variables cannot be overridden in subclasses, and method

parameters are immutable.

Suffice to say that preserving maintainability will pose a challenge.

• In Java, arrays are covariant and lists are invariant

• In Scala, lists are covariant and arrays are invariant

• Gratuitous? Perverse? Malicious? No, it turns out:

• Covariant arrays are not typesafe, thus Java’s
runtime checks and ArrayStoreExceptions. Scala
says: no.

• Scala lists can safely be covariantly typed because
they are immutable.

Arrays and Lists

Java code expects arrays to be covariant.
What to do?

Implicits are a convenient hammer for making sweeping
semantic changes, but in the end they’ll be eliminated

wherever possible.

If we depend on implicits here, we incur edge cases and
ambiguities - for instance:

Scala on the JVM

• http://openjdk.java.net/projects/mlvm/subprojects.html

• ..most of these are potentially useful in Scala - faster
everything, tail call optimization, interface
injection, autonomous methods, and a pony.

• Many of us want the same things, especially the
functional language people.

http://openjdk.java.net/projects/mlvm/subprojects.html
http://openjdk.java.net/projects/mlvm/subprojects.html

Side note on Reifiable Types

• I would suppose most JVM languages have one or
more ambitions hampered by type erasure

• Scala initially adopted Java’s erasure model, but
perhaps that’s not settled?

• Recent Scala versions have a (still undocumented
I think) feature: “A Manifest[T] is an opaque
descriptor for type T.”

• So since the vibe I get is that it’s not coming to
the JVM anytime soon, at least we can do this:

Classfile Format

• The shiniest features of Scala are
implemented with lots and lots of highly
redundant little classes

• Scala’s own performance challenges are more
than sufficient, thanks

• This example not contrived - a Java project
rewritten in Scala could easily see a 10x or
greater increase in classfiles

Left: A classic Java enumerated type
Below: Plausibly idiomatic Scala translation

lifted from an authentic blog

And finally: the sadness

Observation re: Functional Programming

• Imminent ascension of FP predicted...

• ...as it has been every few years since I started
programming.

• It might be true this time, honest!

• FP mainstays like full tail call optimization and first class
continuations in the JVM would mean more FP
mindshare. Or at least happier Scala (and Clojure)
programmers.

• FIN

