
A Lock-Free Hash Table

Fast Bytecodes for
Funny Languages

Dr. Cliff Click
Chief JVM Architect & Distinguished Engineer
blogs.azulsystems.com/cliff
Azul Systems
Sept 24, 2008

2
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Fast Bytecodes For Funny Languages

• JVMs are used for lots of non-Javac bytecodes

• Bytecode patterns are different

• Bytecode producer (this crowd) is curious:
─ Are these bytecodes “fast”? “fast enough”?
─ Am I inlining?
─ JIT'ing to good code? (JIT'ing at all?)

• Personal goal: you ARE using that fancy JIT, right?
─ Otherwise, why did I bother? ;-)

• 'nother goal: maybe help the world escape the Java box

• New language must have a fast reputation
─ Or a large programmer population won't look

3
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Can Your Language Go “To The Metal”?

• Can your bytecodes go “To The Metal”?
─ e.g. Can simple code be mapped to simple machine ops

• Methodology:
─ Write dumb hot SIMPLE loop in lots of languages
─ Look at performance
─ Look at JIT'd code
─ Look for mismatch between language & JVM & machine code

• NOT-GOAL: Who is fastest

• NOT TESTED:
─ Ease of programming, time-to-market, maintenance cost
─ Domain fit (e.g. Ruby-on-Rails)

• IGNORING:
─ Blatant language / microbenchmark mismatch

(FixNum/BigNum)

4
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Can You Take THIS “To The Metal”?

• See “http://blogs.azulsystems.com/cliff/2008/09/a-plea-for-prog.html”

 for(int i=1; i<100000000; i++)
 sum += (sum^i)/i;

• Run with Java, Scala, Clojure, JRuby, JPC, Javascript/Rhino
─ Willing to try more languages

• NOT Goal:
─ Discover the fastest

• NOT Fair:
─ I changed benchmark to be more “fair” to various languages
─ e.g. Using 'double' instead of 'int' for Javascript.

• Tested on Azul JVM
─ Because it's got the best low-level JVM perf analysis tools I've

seen

5
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Scorecard

• Java (unrolled, showing 1 iter):
 add rTmp0, rI, 5 // for unrolled iter #5
 xor rTmp1, rSum, rTmp0
 div rTmp2, rTmp1, rTmp0
 add rSum,rTmp2,rSum
 ... repeat for unrolled iterations

• Scala – Same as Java!
─ Scala “Elegant Scala-ized version” - Ugh

• Clojure – Almost close; very allocation heavy; oddball 'holes'

• JRuby – Major inlining not happening,
─ misled by debugging flag?

• JPC – Fascinating; totally inlined X86 emulation
─ But JIT doesn't grok e.g. dead X86 flag setting

• Javascript/Rhino – Death by 'Double' (not 'double')

6
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Deeper Dive

• Java – Unfair advantage. Semantics match JIT expectations.

• Scala – Borrowed heavily from Java semantics
─ Close fit allows close translation
─ And thus nearly direct translation to machine code
─ Penalty: Only have Java semantics,

e.g. no 'unsigned' type, no auto-BigNum inflation

• JPC – Java “PC”; pure Java X86/DOS emulator
─ Massive bytecode generation; LOTS of JIT'ing
─ For this example: 16000 classes, 7800 compilations
─ But JIT falls down removing e.g. redundant X86 flag sets
─ Maybe fix by never storing 'flags' into memory
─ Also no fixnum issue

7
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Deeper Dive

• Clojure - “almost close”
─ Good: no obvious subroutine calls in inner loop
─ Bad: Massive “ephemeral” object allocation - requires good GC
─ But needs Escape Analysis to go fast
─ Ugly: fix-num overflow checks everywhere
─ Can turn off fix-nums; could be same speed as Java
─ Weird “holes” - Not-optimized reflection calls here & there

• Jython - “almost close”
─ Also has Fixnum issue; massive allocation
─ Some extra locks thrown in

• JavaScript/Rhino
─ All things are Doubles – not 'double'
─ Same allocation issues as Fixnum
─ Otherwise looks pretty good (no fixnum checks)

8
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Deeper Dive

• Common Issue – FixNums
─ Allocation costs (but GC does not); final fields cost mfence
─ Could do much better w/JIT
─ Need ultra-stupid Escape Analysis
─ Need some (easy) JIT tweaking
─ e.g. Getting around Integer.valueOf(i) caching

• JRuby – Missed The Metal
─ Assuming CachingCallSite::call inlines (and allows further inlining)
─ Using +PrintInlining to determine
─ But flag is lying: claims inlined, but it's not

─ (issue is w/BimorphicInlining 'guessing' wrong target)
─ Confirmed w/debug Java5 & GDB on product-mode Java6
─ Confirmed w/Azul – My 1st impression: can't be inlined ever

─ (but please Charles tell me why you think it should!)

9
| ©2008 Azul Systems, Inc.

www.azulsystems.com

What Happened to JRuby?

CachingCallSite::call

A() { x.call(); }

B() { y.call(); }

C() { z.call(); }

class X { targ() {...

class Y { targ() {...

class Z { targ() {...

• Calls stitched together
with trampoline

10
| ©2008 Azul Systems, Inc.

www.azulsystems.com

What Happened to JRuby?

CachingCallSite::call

A() { x.call(); }

B() { y.call(); }

C() { z.call(); }

class X { targ() {...

class Y { targ() {...

class Z { targ() {...

• Goal: inline 'targ' into caller

• JIT removes trampoline

• Possibly inlines

11
| ©2008 Azul Systems, Inc.

www.azulsystems.com

What Happened to JRuby?

CachingCallSite::call

A() { x.call(); }

B() { y.call(); }

C() { z.call(); }

class X { targ() {...

class Y { targ() {...

class Z { targ() {...

• Code not statically analyzable

• No inlining during profiling

• Profiling confuses
callers per callsite

12
| ©2008 Azul Systems, Inc.

www.azulsystems.com

What Happened to JRuby?

• Code not statically analyzable

• No inlining during profiling

• Profiling confuses
callers per callsite

• C2 inlines 'call'
─ No dominate target
─ No attempt at guarded inlining

CachingCallSite::call

A() { x.call(); }

B() { y.call(); }

C() { z.call(); }

class X { targ() {...

class Y { targ() {...

class Z { targ() {...

13
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Lessons

• CAN take “funny language” to the metal (e.g. Scala)

• Easy to be misled (JRuby)
─ Reliance on non-QA'd debugging flag +PrintInlining
─ Rules on inlining are complex, subtle

• But so much performance depends on it!
─ And exact details matter: class hierarchy, final, interface, single-

target

• And how do you know about JRockit (BEA), IBM, etc?

• And heuristics change anyways,
─ what works today is dog-slow tomorrow
─ Unless your language hits the standard benchmark list

• Language/bytecode mismatch made worse by assuming
─ e.g. Uber GC or Uber Escape Analysis, or subtle final-field

semantics

14
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Some Suggestions

• How do you when your bytecodes are working well?
─ Lack of good tools support for telling why optimizer bailed out
─ Same lack for C++, Fortran for the past 50 yrs

• 1- Run microbenchmark w/hot simple code & GDB it
─ Why? So you can 'read' the asm
─ Break in w/GDB and – read the asm
─ Did translation go as you expected? (no?)
─ Simplify even more...

• 2- Run Your Fav JVM w/debugging flags
─ But debugging flags can lie
─ Must cross-correlate with (1)

• 3- Run on Azul & use RTPM
─ Only sorta kidding: email me & ask for Academic Account

15
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Round 2: Alternative Concurrency

• Only Clojure looked at - got lazy busy

• Clojure Traveling Salesmen Problem w/worker 'ants'

• Tried up to 600 'ants' on a 768-way Azul
─ Good scaling (but 20Gig/sec allocation)

• Tried contention microbenchmark
─ Performance died
─ Less TOTAL throughput as more CPUs added
─ JDK 6 Library failure? Clojure usage model failure?

─ Not graceful fall-back under pressure

16
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Lessons?

• Too little data (e.g. no Scala), just my speculation

• Clojure-style MIGHT work, might not
─ 600-way thread-pool works well on Java also

• NOT graceful under pressure
─ Adding more CPUs should not be bad
─ Thru-put cap expected, or maybe slow degrade – but rapid

falloff!?!?
─ Maybe STM becomes “graceful under pressure” later
─ (but it's been 15yrs at still not good)

• Note: complex locking schemes suffer same way
─ eg. add more concurrent DB requests, DB throughput goes up
─ ..then down, then craters
─ Why does DB not queue requests & maintain max throughput?

17
| ©2008 Azul Systems, Inc.

www.azulsystems.com

Future Big Problem

• Reliable performance “under pressure”
─ Eg adding more Threads to a hot lock drops throughput some

─ ...then stabilizes throughput as more threads added
─ Eg adding more CPUs to a wait/notifyall peaks throughput

─ ...then falls constant as most threads uselessly wakeup &
sleep

• And we're working w/weak & immature concurrency libs

• Everybody has a max-throughput
─ And Fall-off Under Load is Bad (FULB™)

• Naively: just queue requests beyond saturation point
─ And maintain max-throughput

• Then why not just publish that (now reliable) max throughput

• So can predict performance as the min of max-thruput's...

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

